Sphericity
Sphericity is a measure of how closely the shape of an object resembles that of a perfect sphere. For example, the sphericity of the balls inside a ball bearing determines the quality of the bearing, such as the load it can bear or the speed at which it can turn without failing. Sphericity is a specific example of a compactness measure of a shape. Defined by Wadell in 1935,[1] the sphericity, [math]\displaystyle{ \Psi }[/math], of an object is the ratio of the surface area of a sphere with the same volume to the object's surface area:
- [math]\displaystyle{ \Psi = \frac{\pi^{\frac{1}{3}}(6V_p)^{\frac{2}{3}}}{A_p} }[/math]
where [math]\displaystyle{ V_p }[/math] is volume of the object and [math]\displaystyle{ A_p }[/math] is the surface area. The sphericity of a sphere is unity by definition and, by the isoperimetric inequality, any shape which is not a sphere will have sphericity less than 1.
Sphericity applies in three dimensions; its analogue in two dimensions, such as the cross sectional circles along a cylindrical object such as a shaft, is called roundness.
Ellipsoidal objects
The sphericity, [math]\displaystyle{ \Psi }[/math], of an oblate spheroid (similar to the shape of the planet Earth) is:
- [math]\displaystyle{ \Psi = \frac{\pi^{\frac{1}{3}}(6V_p)^{\frac{2}{3}}}{A_p} = \frac{2\sqrt[3]{ab^2}}{a+\frac{b^2}{\sqrt{a^2-b^2}}\ln{\left(\frac{a+\sqrt{a^2-b^2}}b\right)}}, }[/math]
where a and b are the semi-major and semi-minor axes respectively.
Derivation
Hakon Wadell defined sphericity as the surface area of a sphere of the same volume as the particle divided by the actual surface area of the particle.
First we need to write surface area of the sphere, [math]\displaystyle{ A_s }[/math] in terms of the volume of the object being measured, [math]\displaystyle{ V_p }[/math]
- [math]\displaystyle{ A_{s}^3 = \left(4 \pi r^2\right)^3 = 4^3 \pi^3 r^6 = 4 \pi \left(4^2 \pi^2 r^6\right) = 4 \pi \cdot 3^2 \left(\frac{4^2 \pi^2}{3^2} r^6\right) = 36 \pi \left(\frac{4 \pi}{3} r^3\right)^2 = 36\,\pi V_{p}^2 }[/math]
therefore
- [math]\displaystyle{ A_{s} = \left(36\,\pi V_{p}^2\right)^{\frac{1}{3}} = 36^{\frac{1}{3}} \pi^{\frac{1}{3}} V_{p}^{\frac{2}{3}} = 6^{\frac{2}{3}} \pi^{\frac{1}{3}} V_{p}^{\frac{2}{3}} = \pi^{\frac{1}{3}} \left(6V_{p}\right)^{\frac{2}{3}} }[/math]
hence we define [math]\displaystyle{ \Psi }[/math] as:
- [math]\displaystyle{ \Psi = \frac{A_s}{A_p} = \frac{ \pi^{\frac{1}{3}} \left(6V_{p}\right)^{\frac{2}{3}} }{A_{p}} }[/math]
Sphericity of common objects
Name | Picture | Volume | Surface area | Sphericity |
---|---|---|---|---|
Sphere | [math]\displaystyle{ \frac{4}{3}\pi r^3 }[/math] | [math]\displaystyle{ 4\pi\,r^2 }[/math] | 1 | |
Disdyakis triacontahedron | [math]\displaystyle{ \frac{180}{11}\left(5+4\sqrt{5}\right)\,s^3 }[/math] | [math]\displaystyle{ \frac{180}{11}\sqrt{179-24\sqrt{5}}\,s^2 }[/math] | [math]\displaystyle{ \frac{\left(\left(5+4\sqrt{5}\right)^{2}\frac{11\pi}{5}\right)^{\frac{1}{3}}}{\sqrt{179-24\sqrt{5}}}\approx0.9857 }[/math] | |
Rhombic triacontahedron | [math]\displaystyle{ 4\sqrt{5+2\sqrt{5}}\,s^3 }[/math] | [math]\displaystyle{ 12\sqrt{5}\,s^2 }[/math] | [math]\displaystyle{ \frac{\pi^{\frac{1}{3}}\left(24\sqrt{5+2\sqrt{5}}\right)^{\frac{2}{3}}}{12\sqrt{5}}\approx0.9609 }[/math] | |
Icosahedron | [math]\displaystyle{ \frac{5}{12}\left(3+\sqrt{5}\right)\,s^3 }[/math] | [math]\displaystyle{ 5\sqrt{3}\,s^2 }[/math] | [math]\displaystyle{ \left(\frac{\left(3+\sqrt{5}\right)^2\pi}{60\sqrt{3}}\right)^{\frac{1}{3}}\approx0.939 }[/math] | |
Dodecahedron | [math]\displaystyle{ \frac{1}{4} \left(15 + 7\sqrt{5}\right)\, s^3 }[/math] | [math]\displaystyle{ 3 \sqrt{25 + 10\sqrt{5}}\, s^2 }[/math] | [math]\displaystyle{ \left(\frac{\left(15 + 7\sqrt{5}\right)^2 \pi}{12\left(25+10\sqrt{5}\right)^{\frac{3}{2}}}\right)^{\frac{1}{3}}\approx0.910 }[/math] | |
Ideal torus [math]\displaystyle{ (R=r) }[/math] |
[math]\displaystyle{ 2\pi^2Rr^2=2\pi^2\,r^3 }[/math] | [math]\displaystyle{ 4\pi^2Rr=4\pi^2\,r^2 }[/math] | [math]\displaystyle{ \left(\frac{9}{4 \pi}\right)^{\frac{1}{3}}\approx0.894 }[/math] | |
Ideal cylinder [math]\displaystyle{ (h=2\,r) }[/math] |
[math]\displaystyle{ \pi\,r^2h=2\pi\,r^3 }[/math] | [math]\displaystyle{ 2\pi\,r(r+h)=6\pi\,r^2 }[/math] | [math]\displaystyle{ \left(\frac{2}{3}\right)^{\frac{1}{3}}\approx0.874 }[/math] | |
Octahedron | [math]\displaystyle{ \frac{1}{3}\sqrt{2}\,s^3 }[/math] | [math]\displaystyle{ 2 \sqrt{3}\,s^2 }[/math] | [math]\displaystyle{ \left(\frac{\pi}{3\sqrt{3}}\right)^{\frac{1}{3}}\approx0.846 }[/math] | |
Hemisphere (half sphere) |
[math]\displaystyle{ \frac{2}{3}\pi\,r^3 }[/math] | [math]\displaystyle{ 3\pi\,r^2 }[/math] | [math]\displaystyle{ \left(\frac{16}{27}\right)^{\frac{1}{3}}\approx0.840 }[/math] | |
Cube (hexahedron) | [math]\displaystyle{ \,s^3 }[/math] | [math]\displaystyle{ 6\,s^2 }[/math] | [math]\displaystyle{ \left(\frac{\pi}{6}\right)^{\frac{1}{3}}\approx0.806 }[/math] | |
Ideal cone [math]\displaystyle{ (h=2\sqrt{2}r) }[/math] |
[math]\displaystyle{ \frac{1}{3}\pi\,r^2h=\frac{2\sqrt{2}}{3}\pi\,r^3 }[/math] | [math]\displaystyle{ \pi\,r(r+\sqrt{r^2+h^2})=4\pi\,r^2 }[/math] | [math]\displaystyle{ \left(\frac{1}{2}\right)^{\frac{1}{3}}\approx0.794 }[/math] | |
Tetrahedron | [math]\displaystyle{ \frac{\sqrt{2}}{12}\,s^3 }[/math] | [math]\displaystyle{ \sqrt{3}\,s^2 }[/math] | [math]\displaystyle{ \left(\frac{\pi}{6\sqrt{3}}\right)^{\frac{1}{3}}\approx0.671 }[/math] |
See also
- Equivalent spherical diameter
- Flattening
- Isoperimetric ratio
- Rounding (sediment)
- Roundness
- Willmore energy
References
- ↑ Wadell, Hakon (1935). "Volume, Shape, and Roundness of Quartz Particles". The Journal of Geology 43 (3): 250–280. doi:10.1086/624298. Bibcode: 1935JG.....43..250W.
External links
Original source: https://en.wikipedia.org/wiki/Sphericity.
Read more |