Subgroup test
In abstract algebra, the one-step subgroup test is a theorem that states that for any group, a nonempty subset of that group is itself a group if the inverse of any element in the subset multiplied with any other element in the subset is also in the subset. The two-step subgroup test is a similar theorem which requires the subset to be closed under the operation and taking of inverses.
One-step subgroup test
Let [math]\displaystyle{ G }[/math] be a group and let [math]\displaystyle{ H }[/math] be a nonempty subset of [math]\displaystyle{ G }[/math]. If for all [math]\displaystyle{ a }[/math] and [math]\displaystyle{ b }[/math] in [math]\displaystyle{ H }[/math], [math]\displaystyle{ a b ^{-1} }[/math] is in [math]\displaystyle{ H }[/math], then [math]\displaystyle{ H }[/math] is a subgroup of [math]\displaystyle{ G }[/math].
Proof
Let [math]\displaystyle{ G }[/math] be a group, let [math]\displaystyle{ H }[/math] be a nonempty subset of [math]\displaystyle{ G }[/math] and assume that for all [math]\displaystyle{ a }[/math] and [math]\displaystyle{ b }[/math] in [math]\displaystyle{ H }[/math], [math]\displaystyle{ ab^{-1} }[/math] is in [math]\displaystyle{ H }[/math]. To prove that [math]\displaystyle{ H }[/math] is a subgroup of [math]\displaystyle{ G }[/math] we must show that [math]\displaystyle{ H }[/math] is associative, has an identity, has an inverse for every element and is closed under the operation. So,
- Since the operation of [math]\displaystyle{ H }[/math] is the same as the operation of [math]\displaystyle{ G }[/math], the operation is associative since [math]\displaystyle{ G }[/math] is a group.
- Since [math]\displaystyle{ H }[/math] is not empty there exists an element [math]\displaystyle{ x }[/math] in [math]\displaystyle{ H }[/math]. If we take [math]\displaystyle{ a = x }[/math] and [math]\displaystyle{ b = x }[/math], then [math]\displaystyle{ ab^{-1} = x x^{-1} = e }[/math], where [math]\displaystyle{ e }[/math] is the identity element. Therefore [math]\displaystyle{ e }[/math] is in [math]\displaystyle{ H }[/math].
- Let [math]\displaystyle{ x }[/math] be an element in [math]\displaystyle{ H }[/math] and we have just shown the identity element, [math]\displaystyle{ e }[/math], is in [math]\displaystyle{ H }[/math]. Then let [math]\displaystyle{ a = e }[/math] and [math]\displaystyle{ b = x }[/math], it follows that [math]\displaystyle{ ab^{-1} = ex^{-1} = x^{-1} }[/math] in [math]\displaystyle{ H }[/math]. So the inverse of an element in [math]\displaystyle{ H }[/math] is in [math]\displaystyle{ H }[/math].
- Finally, let [math]\displaystyle{ x }[/math] and [math]\displaystyle{ y }[/math] be elements in [math]\displaystyle{ H }[/math], then since [math]\displaystyle{ y }[/math] is in [math]\displaystyle{ H }[/math] it follows that [math]\displaystyle{ y^{-1} }[/math] is in [math]\displaystyle{ H }[/math]. Hence [math]\displaystyle{ x (y^{-1})^{-1} = xy }[/math] is in [math]\displaystyle{ H }[/math] and so [math]\displaystyle{ H }[/math] is closed under the operation.
Thus [math]\displaystyle{ H }[/math] is a subgroup of [math]\displaystyle{ G }[/math].
Two-step subgroup test
A corollary of this theorem is the two-step subgroup test which states that a nonempty subset of a group is itself a group if the subset is closed under the operation as well as under the taking of inverses.
This article does not cite any external source. HandWiki requires at least one external source. See citing external sources. (2021) (Learn how and when to remove this template message) |
Original source: https://en.wikipedia.org/wiki/Subgroup test.
Read more |