Suita conjecture
In mathematics, the Suita conjecture is a conjecture related to the theory of the Riemann surface, the boundary behavior of conformal maps, the theory of Bergman kernel, and the theory of the L2 extension. The conjecture states the following:
(Suita 1972): Let R be an Riemann surface, which admits a nontrivial Green function [math]\displaystyle{ G_R }[/math]. Let [math]\displaystyle{ \omega }[/math] be a local coordinate on a neighborhood [math]\displaystyle{ V_{z_0} }[/math] of [math]\displaystyle{ z_0 \in R }[/math] satisfying [math]\displaystyle{ w(z_0) = 0 }[/math]. Let [math]\displaystyle{ \kappa R }[/math] be the Bergman kernel for holomorphic (1, 0) forms on R. We define [math]\displaystyle{ B_{R}(z)|dw|^2 := \kappa_{R}(z)|_{V_{z_0}} }[/math], and [math]\displaystyle{ B_{R}(z, \overline{t})d\omega \otimes d\overline{t} := \kappa_{R}(z,\overline{t}) }[/math] . Let [math]\displaystyle{ c_{\beta}(z) }[/math] be the logarithmic capacity which is locally defined by [math]\displaystyle{ c_{\beta}(z_0) := \exp \lim_{\xi \to z} (G_{R}(z, z_{0}) -\log |\omega(z)|) }[/math] on R. Then, the inequality [math]\displaystyle{ (c_{\beta}(z_{0}))^2 \leq \pi B_{R}(z_0) }[/math] holds on the every open Riemann surface R, and also, with equality, then [math]\displaystyle{ B_{R} \equiv 0 }[/math] or, R is conformally equivalent to the unit disc less a (possible) closed set of inner capacity zero.[1]
It was first proved by (Błocki 2013) for the bounded plane domain and then completely in a more generalized version by (Guan Zhou). Also, another proof of the Suita conjecture and some examples of its generalization to several complex variables (the multi (high) - dimensional Suita conjecture) were given in (Błocki 2014a) and (Błocki Zwonek). The multi (high) - dimensional Suita conjecture fails in non-pseudoconvex domains.[2] This conjecture was proved through the optimal estimation of the Ohsawa–Takegoshi L2 extension theorem.
Notes
References
- Błocki, Zbigniew (2013). "Suita conjecture and the Ohsawa-Takegoshi extension theorem". Inventiones Mathematicae 193 (1): 149–158. doi:10.1007/s00222-012-0423-2. Bibcode: 2013InMat.193..149B.
- Błocki, Zbigniew (2014a). "A Lower Bound for the Bergman Kernel and the Bourgain-Milman Inequality". Geometric Aspects of Functional Analysis: Israel Seminar (GAFA) 2011-2013. Lecture Notes in Mathematics. 2116. pp. 53–63. doi:10.1007/978-3-319-09477-9_4. ISBN 978-3-319-09476-2. https://books.google.com/books?id=t6_CBAAAQBAJ&pg=PA52.
- Błocki, Zbigniew (2014b). "Cauchy–Riemann meet Monge–Ampère". Bulletin of Mathematical Sciences 4 (3): 433–480. doi:10.1007/s13373-014-0058-2.
- Błocki, Zbigniew (2017). "Suita Conjecture from the One-dimensional Viewpoint". Analysis Meets Geometry. Trends in Mathematics. pp. 127–133. doi:10.1007/978-3-319-52471-9_9. ISBN 978-3-319-52469-6. http://gamma.im.uj.edu.pl/~blocki/publ/mikael.pdf.
- Błocki, Zbigniew; Zwonek, Włodzimierz (2020). "Generalizations of the Higher Dimensional Suita Conjecture and Its Relation with a Problem of Wiegerinck". The Journal of Geometric Analysis 30 (2): 1259–1270. doi:10.1007/s12220-019-00343-8.
- Guan, Qi'an; Zhou, Xiangyu (2015). "A solution of an [math]\displaystyle{ L^2 }[/math] extension problem with optimal estimate and applications". Annals of Mathematics 181 (3): 1139–1208. doi:10.4007/annals.2015.181.3.6.
- Nikolov, Nikolai (2015). "Two remarks on the Suita conjecture". Annales Polonici Mathematici 113: 61–63. doi:10.4064/ap113-1-3.
- Nikolov, Nikolai; Thomas, Pascal J. (2021). "Growth of Sibony metric and Bergman kernel for domains with low regularity". Journal of Mathematical Analysis and Applications 499: 125018. doi:10.1016/j.jmaa.2021.125018.
- Bousfield Classes and Ohkawa's Theorem. Springer Proceedings in Mathematics & Statistics. 309. 2020. doi:10.1007/978-981-15-1588-0. ISBN 978-981-15-1587-3. https://books.google.com/books?id=ssPXDwAAQBAJ&pg=PA426.
- Ohsawa, Takeo (2017). "On the extension of [math]\displaystyle{ L^2 }[/math] holomorphic functions VIII — a remark on a theorem of Guan and Zhou". International Journal of Mathematics 28 (9). doi:10.1142/S0129167X17400055.
- Suita, Nobuyuki (1972). "Capacities and kernels on Riemann surfaces". Archive for Rational Mechanics and Analysis 46 (3): 212–217. doi:10.1007/BF00252460. Bibcode: 1972ArRMA..46..212S.
Original source: https://en.wikipedia.org/wiki/Suita conjecture.
Read more |