Cubic-octahedral honeycomb

From HandWiki
Cube-octahedron honeycomb
Type Compact uniform honeycomb
Schläfli symbol {(3,4,3,4)} or {(4,3,4,3)}
Coxeter diagrams CDel label4.pngCDel branch 10r.pngCDel 3ab.pngCDel branch.pngCDel label4.png
CDel node 1.pngCDel splitplit1u.pngCDel branch3u.pngCDel 3a3buc-cross.pngCDel branch3u 11.pngCDel splitplit2u.pngCDel node.pngCDel branchu 01r.pngCDel 3ab.pngCDel branch 10lru.pngCDel split2-44.pngCDel node.pngCDel labelh.pngCDel branch 10r.pngCDel 4a4b.pngCDel branch.pngCDel labels.png
Cells {4,3} Uniform polyhedron-43-t0.png
{3,4} 40px
r{4,3} Uniform polyhedron-43-t1.png
Faces triangle {3}
square {4}
Vertex figure Uniform t0 4343 honeycomb verf.png
rhombicuboctahedron
Coxeter group [(4,3)[2]]
Properties Vertex-transitive, edge-transitive

In the geometry of hyperbolic 3-space, the cubic-octahedral honeycomb is a compact uniform honeycomb, constructed from cube, octahedron, and cuboctahedron cells, in a rhombicuboctahedron vertex figure. It has a single-ring Coxeter diagram, CDel label4.pngCDel branch 10r.pngCDel 3ab.pngCDel branch.pngCDel label4.png, and is named by its two regular cells.

A geometric honeycomb is a space-filling of polyhedral or higher-dimensional cells, so that there are no gaps. It is an example of the more general mathematical tiling or tessellation in any number of dimensions.

Honeycombs are usually constructed in ordinary Euclidean ("flat") space, like the convex uniform honeycombs. They may also be constructed in non-Euclidean spaces, such as hyperbolic uniform honeycombs. Any finite uniform polytope can be projected to its circumsphere to form a uniform honeycomb in spherical space.

Images

Wide-angle perspective views:

It contains a subgroup H2 tiling, the alternated order-4 hexagonal tiling, CDel nodes 11.pngCDel 3a3b-cross.pngCDel nodes.png, with vertex figure (3.4)4.

Uniform tiling verf 34343434.png

Symmetry

A lower symmetry form, index 6, of this honeycomb can be constructed with [(4,3,4,3*)] symmetry, represented by a trigonal trapezohedron fundamental domain, and Coxeter diagram CDel node 1.pngCDel splitplit1u.pngCDel branch3u.pngCDel 3a3buc-cross.pngCDel branch3u 11.pngCDel splitplit2u.pngCDel node.png. This lower symmetry can be extended by restoring one mirror as CDel branchu 01r.pngCDel 3ab.pngCDel branch 10lru.pngCDel split2-44.pngCDel node.png.

Cells
CDel nodes 11.pngCDel 2.pngCDel node 1.pngCDel node 1.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.png
Uniform polyhedron 222-t012.png = Uniform polyhedron-43-t0.png
CDel nodes.pngCDel split2.pngCDel node 1.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-33-t1.png = Uniform polyhedron-43-t2.png
CDel nodes 11.pngCDel split2.pngCDel node.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform polyhedron-33-t02.png = Uniform polyhedron-43-t1.png

Related honeycombs

There are 5 related uniform honeycombs generated within the same family, generated with 2 or more rings of the Coxeter group CDel label4.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel label4.png: CDel label4.pngCDel branch 10r.pngCDel 3ab.pngCDel branch 10l.pngCDel label4.png, CDel label4.pngCDel branch 01r.pngCDel 3ab.pngCDel branch 10l.pngCDel label4.png, CDel label4.pngCDel branch 11.pngCDel 3ab.pngCDel branch.pngCDel label4.png, CDel label4.pngCDel branch 11.pngCDel 3ab.pngCDel branch 10l.pngCDel label4.png, CDel label4.pngCDel branch 11.pngCDel 3ab.pngCDel branch 11.pngCDel label4.png.

Rectified cubic-octahedral honeycomb

Rectified cubic-octahedral honeycomb
Type Compact uniform honeycomb
Schläfli symbol r{(4,3,4,3)}
Coxeter diagrams CDel label4.pngCDel branch 01r.pngCDel 3ab.pngCDel branch 10l.pngCDel label4.png
Cells r{4,3} Uniform polyhedron-43-t1.png
rr{3,4} Uniform polyhedron-43-t02.png
Faces triangle {3}
square {4}
Vertex figure Uniform t02 4343 honeycomb verf.png
cuboid
Coxeter group (4,3)[2], CDel label4.pngCDel branch c1-2.pngCDel 3ab.pngCDel branch c2-1.pngCDel label4.png
Properties Vertex-transitive, edge-transitive

The rectified cubic-octahedral honeycomb is a compact uniform honeycomb, constructed from cuboctahedron and rhombicuboctahedron cells, in a cuboid vertex figure. It has a Coxeter diagram CDel label4.pngCDel branch 01r.pngCDel 3ab.pngCDel branch 10l.pngCDel label4.png.

H3 4343-1010 center ultrawide.png

Perspective view from center of rhombicuboctahedron

Cyclotruncated cubic-octahedral honeycomb

Cyclotruncated cubic-octahedral honeycomb
Type Compact uniform honeycomb
Schläfli symbol ct{(4,3,4,3)}
Coxeter diagrams CDel label4.pngCDel branch 11.pngCDel 3ab.pngCDel branch.pngCDel label4.png
Cells t{4,3} Uniform polyhedron-43-t01.png
{3,4} Uniform polyhedron-43-t2.png
Faces triangle {3}
octagon {8}
Vertex figure Uniform t01 4343 honeycomb verf.png
square antiprism
Coxeter group (4,3)[2], CDel label4.pngCDel branch c1.pngCDel 3ab.pngCDel branch c2.pngCDel label4.png
Properties Vertex-transitive, edge-transitive

The cyclotruncated cubic-octahedral honeycomb is a compact uniform honeycomb, constructed from truncated cube and octahedron cells, in a square antiprism vertex figure. It has a Coxeter diagram CDel label4.pngCDel branch 11.pngCDel 3ab.pngCDel branch.pngCDel label4.png.

H3 4343-1100 center ultrawide.png

Perspective view from center of octahedron

It can be seen as somewhat analogous to the trioctagonal tiling, which has truncated square and triangle facets:

Uniform tiling 433-t01.png

Cyclotruncated octahedral-cubic honeycomb

Cyclotruncated octahedral-cubic honeycomb
Type Compact uniform honeycomb
Schläfli symbol ct{(3,4,3,4)}
Coxeter diagrams CDel label4.pngCDel branch 10r.pngCDel 3ab.pngCDel branch 10l.pngCDel label4.png
CDel node 1.pngCDel splitplit1u.pngCDel branch3u 11.pngCDel 3a3buc-cross.pngCDel branch3u 11.pngCDel splitplit2u.pngCDel node 1.pngCDel branchu 11.pngCDel 3ab.pngCDel branch 11.pngCDel split2-44.pngCDel node.pngCDel labelh.pngCDel branch 11.pngCDel 4a4b.pngCDel branch.pngCDel labels.png
Cells {4,3} Uniform polyhedron-43-t0.png
t{3,4} Uniform polyhedron-43-t12.png
Faces square {4}
hexagon {6}
Vertex figure Uniform t12 4343 honeycomb verf.png
triangular antiprism
Coxeter group (4,3)[2], CDel label4.pngCDel branch c1-2.pngCDel 3ab.pngCDel branch c1-2.pngCDel label4.png
Properties Vertex-transitive, edge-transitive

The cyclotruncated octahedral-cubic honeycomb is a compact uniform honeycomb, constructed from cube and truncated octahedron cells, in a triangular antiprism vertex figure. It has a Coxeter diagram CDel label4.pngCDel branch 10r.pngCDel 3ab.pngCDel branch 10l.pngCDel label4.png.

H3 4343-0110 center ultrawide.png

Perspective view from center of cube

It contains an H2 subgroup tetrahexagonal tiling alternating square and hexagonal faces, with Coxeter diagram CDel branch 11.pngCDel split2-44.pngCDel node.png or half symmetry CDel nodes 11.pngCDel 3a3b-cross.pngCDel nodes 11.png:

H2 tiling 344-5.png 3222-uniform tiling-verf4646.png

Symmetry

Fundamental domains
Trigonal trapezohedron hyperboic fundamental domain.png
Trigonal trapezohedron
CDel node c1.pngCDel splitplit1u.pngCDel branch3u c2.pngCDel 3a3buc-cross.pngCDel branch3u c1.pngCDel splitplit2u.pngCDel node c2.pngCDel branch c1-2.pngCDel 4a4b.pngCDel branch.pngCDel labels.png
Trigonal trapezohedron hyperbolic fundamental half domain.png
Half domain
CDel node c1.pngCDel splitplit1u.pngCDel branch3u c2.pngCDel 3a3buc-cross.pngCDel branch3u c3.pngCDel splitplit2u.pngCDel node c4.pngCDel branchu c1-4.pngCDel 3ab.pngCDel branch c2-3.pngCDel split2-44.pngCDel node.pngCDel labelh.png
H2chess 246a.png
H2 subgroup, rhombic *3232
CDel nodeab c2.pngCDel 3a3b-cross.pngCDel nodeab c3.pngCDel branch c2-3.pngCDel split2-44.pngCDel node.pngCDel labelh.png

A radial subgroup symmetry, index 6, of this honeycomb can be constructed with [(4,3,4,3*)], CDel branch 11.pngCDel 4a4b.pngCDel branch.pngCDel labels.png, represented by a trigonal trapezohedron fundamental domain, and Coxeter diagram CDel node 1.pngCDel splitplit1u.pngCDel branch3u 11.pngCDel 3a3buc-cross.pngCDel branch3u 11.pngCDel splitplit2u.pngCDel node 1.png. This lower symmetry can be extended by restoring one mirror as CDel branchu 11.pngCDel 3ab.pngCDel branch 11.pngCDel split2-44.pngCDel node.png.

Cells
CDel nodes 11.pngCDel 2.pngCDel node 1.pngCDel node 1.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.png
Uniform polyhedron 222-t012.png = Uniform polyhedron-43-t0.png
CDel nodes 11.pngCDel split2.pngCDel node 1.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-33-t012.png = Uniform polyhedron-43-t12.png

Truncated cubic-octahedral honeycomb

Truncated cubic-octahedral honeycomb
Type Compact uniform honeycomb
Schläfli symbol t{(4,3,4,3)}
Coxeter diagrams CDel label4.pngCDel branch 11.pngCDel 3ab.pngCDel branch 10l.pngCDel label4.png
Cells t{3,4} Truncated octahedron.png
t{4,3} 40px
rr{3,4} 40px
tr{4,3} Great rhombicuboctahedron.png
Faces triangle {3}
square {4}
hexagon {6}
octagon {8}
Vertex figure Uniform t012 4343 honeycomb verf.png
rectangular pyramid
Coxeter group [(4,3)[2]]
Properties Vertex-transitive

The truncated cubic-octahedral honeycomb is a compact uniform honeycomb, constructed from truncated octahedron, truncated cube, rhombicuboctahedron, and truncated cuboctahedron cells, in a rectangular pyramid vertex figure. It has a Coxeter diagram CDel label4.pngCDel branch 11.pngCDel 3ab.pngCDel branch 10l.pngCDel label4.png.

H3 4343-1110 center ultrawide.png

Perspective view from center of rhombicuboctahedron

Omnitruncated cubic-octahedral honeycomb

Omnitruncated cubic-octahedral honeycomb
Type Compact uniform honeycomb
Schläfli symbol tr{(4,3,4,3)}
Coxeter diagrams CDel label4.pngCDel branch 11.pngCDel 3ab.pngCDel branch 11.pngCDel label4.png
Cells tr{3,4} Great rhombicuboctahedron.png
Faces square {4}
hexagon {6}
octagon {8}
Vertex figure Uniform t0123 4343 honeycomb verf.png
Rhombic disphenoid
Coxeter group [2[(4,3)[2]]] or [(2,2)+[(4,3)[2]]], CDel label4.pngCDel branch c1.pngCDel 3ab.pngCDel branch c1.pngCDel label4.png
Properties Vertex-transitive, edge-transitive, cell-transitive

The omnitruncated cubic-octahedral honeycomb is a compact uniform honeycomb, constructed from truncated cuboctahedron cells, in a rhombic disphenoid vertex figure. It has a Coxeter diagram CDel label4.pngCDel branch 11.pngCDel 3ab.pngCDel branch 11.pngCDel label4.png with [2,2]+ (order 4) extended symmetry in its rhombic disphenoid vertex figure.

H3 4343-1111 center ultrawide.png

Perspective view from center of truncated cuboctahedron

See also

  • Convex uniform honeycombs in hyperbolic space
  • List of regular polytopes

References

  • Coxeter, Regular Polytopes, 3rd. ed., Dover Publications, 1973. ISBN 0-486-61480-8. (Tables I and II: Regular polytopes and honeycombs, pp. 294–296)
  • Coxeter, The Beauty of Geometry: Twelve Essays, Dover Publications, 1999 ISBN 0-486-40919-8 (Chapter 10: Regular honeycombs in hyperbolic space, Summary tables II, III, IV, V, p212-213)
  • Jeffrey R. Weeks The Shape of Space, 2nd edition ISBN 0-8247-0709-5 (Chapter 16-17: Geometries on Three-manifolds I, II)
  • Norman Johnson Uniform Polytopes, Manuscript
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
    • N.W. Johnson: Geometries and Transformations, (2018) Chapter 13: Hyperbolic Coxeter groups