Alternated order-4 hexagonal tiling

From HandWiki
Short description: Uniform tiling of the hyperbolic plane

In geometry, the alternated order-4 hexagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of (3,4,4), h{6,4}, and hr{6,6}.

Uniform constructions

There are four uniform constructions, with some of lower ones which can be seen with two colors of triangles:

*443 3333 *3232 3*22
CDel node h1.pngCDel 6.pngCDel node.pngCDel 4.pngCDel node.png = CDel branch 10ru.pngCDel split2-44.pngCDel node.png CDel node h.pngCDel 6.pngCDel node g.pngCDel 4sg.pngCDel node g.png = CDel branch hh.pngCDel 3a3b-cross.pngCDel branch hh.png CDel node h1.pngCDel 6.pngCDel node.pngCDel 4.pngCDel node h0.png = CDel node h1.pngCDel split1-66.pngCDel nodes.png = CDel nodes 11.pngCDel 3a3b-cross.pngCDel nodes.png CDel node h.pngCDel 6.pngCDel node h0.pngCDel 4.pngCDel node.png = CDel branch hh.pngCDel 2a2b-cross.pngCDel nodes.png
H2 tiling 344-1.png Uniform tiling verf 34343434.png
(4,4,3) = h{6,4} hr{6,6} = h{6,4}​12

Related polyhedra and tiling

References

  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN:978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. 

See also

External links