Alternated order-4 hexagonal tiling
From HandWiki
Short description: Uniform tiling of the hyperbolic plane
In geometry, the alternated order-4 hexagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of (3,4,4), h{6,4}, and hr{6,6}.
Uniform constructions
There are four uniform constructions, with some of lower ones which can be seen with two colors of triangles:
*443 | 3333 | *3232 | 3*22 |
---|---|---|---|
= | = | = = | = |
(4,4,3) = h{6,4} | hr{6,6} = h{6,4}1⁄2 |
Related polyhedra and tiling
References
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN:978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
- "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8.
See also
- Square tiling
- Uniform tilings in hyperbolic plane
- List of regular polytopes
External links
- Weisstein, Eric W.. "Hyperbolic tiling". http://mathworld.wolfram.com/HyperbolicTiling.html.
- Weisstein, Eric W.. "Poincaré hyperbolic disk". http://mathworld.wolfram.com/PoincareHyperbolicDisk.html.
- Hyperbolic and Spherical Tiling Gallery
- KaleidoTile 3: Educational software to create spherical, planar and hyperbolic tilings
- Hyperbolic Planar Tessellations, Don Hatch
Original source: https://en.wikipedia.org/wiki/Alternated order-4 hexagonal tiling.
Read more |