Type-2 Gumbel distribution

From HandWiki
Short description: Probability distribution
Type-2 Gumbel
Parameters [math]\displaystyle{ a\! }[/math] (real)
[math]\displaystyle{ b\! }[/math] shape (real)
PDF [math]\displaystyle{ a b x^{-a-1} e^{-b x^{-a}}\! }[/math]
CDF [math]\displaystyle{ e^{-b x^{-a}}\! }[/math]
Mean [math]\displaystyle{ b^{1/a}\Gamma(1-1/a)\! }[/math]
Variance [math]\displaystyle{ b^{2/a}(\Gamma(1-1/a)-{\Gamma(1-1/a)}^2)\! }[/math]

In probability theory, the Type-2 Gumbel probability density function is

[math]\displaystyle{ f(x|a,b) = a b x^{-a-1} e^{-b x^{-a}}\, }[/math]

for

[math]\displaystyle{ 0 \lt x \lt \infty }[/math].

For [math]\displaystyle{ 0\lt a\le 1 }[/math] the mean is infinite. For [math]\displaystyle{ 0\lt a\le 2 }[/math] the variance is infinite.

The cumulative distribution function is

[math]\displaystyle{ F(x|a,b) = e^{-b x^{-a}}\, }[/math]

The moments [math]\displaystyle{ E[X^k] \, }[/math] exist for [math]\displaystyle{ k \lt a\, }[/math]

The distribution is named after Emil Julius Gumbel (1891 – 1966).

Generating random variates

Given a random variate U drawn from the uniform distribution in the interval (0, 1), then the variate

[math]\displaystyle{ X=(-\ln U/b)^{-1/a}, }[/math]

has a Type-2 Gumbel distribution with parameter [math]\displaystyle{ a }[/math] and [math]\displaystyle{ b }[/math]. This is obtained by applying the inverse transform sampling-method.

Related distributions

  • The special case b = 1 yields the Fréchet distribution.
  • Substituting [math]\displaystyle{ b=\lambda^{-k} }[/math] and [math]\displaystyle{ a=-k }[/math] yields the Weibull distribution. Note, however, that a positive k (as in the Weibull distribution) would yield a negative a and hence a negative probability density, which is not allowed.

Based on The GNU Scientific Library, used under GFDL.

See also