Type-2 Gumbel distribution

From HandWiki
Short description: Probability distribution
Type-2 Gumbel
Parameters  a  (shape),
 b  (scale)
Support  0<x< 
PDF  a b xa1 eb xa 
CDF  eb xa 
Quantile  (  loge(p) b)1a 
Mean  b1a Γ( 1 1 a ) 
Variance  b2a Γ(1 1 a )(1Γ(11a)) 

In probability theory, the Type-2 Gumbel probability density function is

 f(x|a,b)=a b xa1 eb xa for x>0.

For  0<a1  the mean is infinite. For  0<a2  the variance is infinite.

The cumulative distribution function is

 F(x|a,b)=eb xa.

The moments  𝔼[Xk]  exist for  k<a 

The distribution is named after Emil Julius Gumbel (1891 – 1966).

Generating random variates

Given a random variate  U  drawn from the uniform distribution in the interval  (0,1) , then the variate

X=(lnUb)1a 

has a Type-2 Gumbel distribution with parameter  a  and  b. This is obtained by applying the inverse transform sampling-method.

  • Substituting  b=λk  and  a=k  yields the Weibull distribution. Note, however, that a positive  k  (as in the Weibull distribution) would yield a negative  a  and hence a negative probability density, which is not allowed.
  • If X is Type-2 Gumbel-distributed with parameters a and b, then X1Weibull(a,b1/a).

Based on "Gumbel distribution". https://www.gnu.org/software/gsl/manual/html_node/The-Type_002d2-Gumbel-Distribution.html,  used under GFDL.

See also