Waldspurger formula
In representation theory of mathematics, the Waldspurger formula relates the special values of two L-functions of two related admissible irreducible representations. Let k be the base field, f be an automorphic form over k, π be the representation associated via the Jacquet–Langlands correspondence with f. Goro Shimura (1976) proved this formula, when [math]\displaystyle{ k = \mathbb{Q} }[/math] and f is a cusp form; Günter Harder made the same discovery at the same time in an unpublished paper. Marie-France Vignéras (1980) proved this formula, when [math]\displaystyle{ k = \mathbb{Q} }[/math] and f is a newform. Jean-Loup Waldspurger, for whom the formula is named, reproved and generalized the result of Vignéras in 1985 via a totally different method which was widely used thereafter by mathematicians to prove similar formulas.
Statement
Let [math]\displaystyle{ k }[/math] be a number field, [math]\displaystyle{ \mathbb{A} }[/math] be its adele ring, [math]\displaystyle{ k^\times }[/math] be the subgroup of invertible elements of [math]\displaystyle{ k }[/math], [math]\displaystyle{ \mathbb{A}^\times }[/math] be the subgroup of the invertible elements of [math]\displaystyle{ \mathbb{A} }[/math], [math]\displaystyle{ \chi, \chi_1, \chi_2 }[/math] be three quadratic characters over [math]\displaystyle{ \mathbb{A}^\times/k^\times }[/math], [math]\displaystyle{ G = SL_2(k) }[/math], [math]\displaystyle{ \mathcal{A}(G) }[/math] be the space of all cusp forms over [math]\displaystyle{ G(k)\backslash G(\mathbb{A}) }[/math], [math]\displaystyle{ \mathcal{H} }[/math] be the Hecke algebra of [math]\displaystyle{ G(\mathbb{A}) }[/math]. Assume that, [math]\displaystyle{ \pi }[/math] is an admissible irreducible representation from [math]\displaystyle{ G(\mathbb{A}) }[/math] to [math]\displaystyle{ \mathcal{A}(G) }[/math], the central character of π is trivial, [math]\displaystyle{ \pi_\nu \sim \pi[h_\nu] }[/math] when [math]\displaystyle{ \nu }[/math] is an archimedean place, [math]\displaystyle{ {A} }[/math] is a subspace of [math]\displaystyle{ {\mathcal{A}(G)} }[/math] such that [math]\displaystyle{ \pi|_\mathcal{H} : \mathcal{H} \to A }[/math]. We suppose further that, [math]\displaystyle{ \varepsilon(\pi\otimes\chi, 1/2) }[/math] is the Langlands [math]\displaystyle{ \varepsilon }[/math]-constant [ ( Langlands 1970 ); ( Deligne 1972 ) ] associated to [math]\displaystyle{ \pi }[/math] and [math]\displaystyle{ \chi }[/math] at [math]\displaystyle{ s = 1/2 }[/math]. There is a [math]\displaystyle{ {\gamma \in k^\times} }[/math] such that [math]\displaystyle{ k(\chi) = k( \sqrt{\gamma} ) }[/math].
Definition 1. The Legendre symbol [math]\displaystyle{ \left(\frac{\chi}{\pi}\right) = \varepsilon(\pi\otimes\chi, 1/2) \cdot \varepsilon(\pi, 1/2) \cdot \chi(-1). }[/math]
- Comment. Because all the terms in the right either have value +1, or have value −1, the term in the left can only take value in the set {+1, −1}.
Definition 2. Let [math]\displaystyle{ {D_\chi} }[/math] be the discriminant of [math]\displaystyle{ \chi }[/math]. [math]\displaystyle{ p(\chi) = D_\chi^{1/2} \sum_{\nu\text{ archimedean}} \left\vert \gamma_\nu \right\vert_\nu^{h_\nu/2}. }[/math]
Definition 3. Let [math]\displaystyle{ f_0, f_1 \in A }[/math]. [math]\displaystyle{ b(f_0, f_1) = \int_{x\in k^\times} f_0(x) \cdot \overline{f_1(x)} \, dx. }[/math]
Definition 4. Let [math]\displaystyle{ {T} }[/math] be a maximal torus of [math]\displaystyle{ {G} }[/math], [math]\displaystyle{ {Z} }[/math] be the center of [math]\displaystyle{ {G} }[/math], [math]\displaystyle{ \varphi \in A }[/math]. [math]\displaystyle{ \beta (\varphi, T) = \int_{t \in Z\backslash T} b(\pi (t)\varphi, \varphi) \, dt . }[/math]
- Comment. It is not obvious though, that the function [math]\displaystyle{ \beta }[/math] is a generalization of the Gauss sum.
Let [math]\displaystyle{ K }[/math] be a field such that [math]\displaystyle{ k(\pi)\subset K\subset\mathbb{C} }[/math]. One can choose a K-subspace[math]\displaystyle{ {A^0} }[/math] of [math]\displaystyle{ A }[/math] such that (i) [math]\displaystyle{ A = A^0 \otimes_K\mathbb{C} }[/math]; (ii) [math]\displaystyle{ (A^0)^{\pi(G)} = A^0 }[/math]. De facto, there is only one such [math]\displaystyle{ A^0 }[/math] modulo homothety. Let [math]\displaystyle{ T_1, T_2 }[/math] be two maximal tori of [math]\displaystyle{ G }[/math] such that [math]\displaystyle{ \chi_{T_1} = \chi_1 }[/math] and [math]\displaystyle{ \chi_{T_2} = \chi_2 }[/math]. We can choose two elements [math]\displaystyle{ \varphi_1, \varphi_2 }[/math] of [math]\displaystyle{ A^0 }[/math] such that [math]\displaystyle{ \beta(\varphi_1, T_1) \neq 0 }[/math] and [math]\displaystyle{ \beta(\varphi_2, T_2) \neq 0 }[/math].
Definition 5. Let [math]\displaystyle{ D_1, D_2 }[/math] be the discriminants of [math]\displaystyle{ \chi_1, \chi_2 }[/math].
- [math]\displaystyle{ p(\pi, \chi_1, \chi_2) = D_1^{-1/2} D_2^{1/2} L(\chi_1, 1)^{-1} L(\chi_2, 1) L(\pi\otimes\chi_1, 1/2) L(\pi\otimes\chi_2, 1/2)^{-1} \beta(\varphi_1, T_1)^{-1} \beta(\varphi_2, T_2). }[/math]
- Comment. When the [math]\displaystyle{ \chi_1 = \chi_2 }[/math], the right hand side of Definition 5 becomes trivial.
We take [math]\displaystyle{ \Sigma_f }[/math] to be the set {all the finite [math]\displaystyle{ k }[/math]-places [math]\displaystyle{ \nu \mid \ \pi_\nu }[/math] doesn't map non-zero vectors invariant under the action of [math]\displaystyle{ {GL_2(k_\nu)} }[/math] to zero}, [math]\displaystyle{ {\Sigma_s} }[/math] to be the set of (all [math]\displaystyle{ k }[/math]-places [math]\displaystyle{ \nu \mid \nu }[/math] is real, or finite and special).
Theorem [1] — Let [math]\displaystyle{ k = \mathbb{Q} }[/math]. We assume that, (i) [math]\displaystyle{ L(\pi\otimes\chi_2, 1/2) \neq 0 }[/math]; (ii) for [math]\displaystyle{ \nu \in \Sigma_s }[/math], [math]\displaystyle{ \left(\frac{\chi_{1, \nu}} {\pi_\nu}\right) = \left(\frac{\chi_{2, \nu}} {\pi_\nu}\right) }[/math] . Then, there is a constant [math]\displaystyle{ {q \in \mathbb{Q}(\pi)} }[/math] such that [math]\displaystyle{ L(\pi\otimes\chi_1, 1/2) L(\pi\otimes\chi_2, 1/2)^{-1} = q p(\chi_1) p(\chi_2)^{-1} \prod_{\nu \in \Sigma_f} p(\pi_\nu, \chi_{1, \nu}, \chi_{2, \nu}) }[/math]
Comments:
- The formula in the theorem is the well-known Waldspurger formula. It is of global-local nature, in the left with a global part, in the right with a local part. By 2017, mathematicians often call it the classic Waldspurger's formula.
- It is worthwhile to notice that, when the two characters are equal, the formula can be greatly simplified.
- [ ( Waldspurger 1985 ), Thm 6, p. 241 ] When one of the two characters is [math]\displaystyle{ {1} }[/math], Waldspurger's formula becomes much more simple. Without loss of generality, we can assume that, [math]\displaystyle{ \chi_1 = \chi }[/math] and [math]\displaystyle{ \chi_2 = 1 }[/math]. Then, there is an element [math]\displaystyle{ { q \in \mathbb{Q}(\pi) } }[/math] such that [math]\displaystyle{ L(\pi\otimes\chi, 1/2) L(\pi, 1/2)^{-1} = q D_{\chi}^{1/2}. }[/math]
The case when Fp(T) and φ is a metaplectic cusp form
Let p be prime number, [math]\displaystyle{ \mathbb{F}_p }[/math] be the field with p elements, [math]\displaystyle{ R = \mathbb{F}_p[T], k = \mathbb{F}_p(T), k_\infty = \mathbb{F}_p((T^{-1})), o_\infty }[/math] be the integer ring of [math]\displaystyle{ k_\infty, \mathcal{H} = PGL_2(k_\infty)/PGL_2(o_\infty), \Gamma = PGL_2(R) }[/math]. Assume that, [math]\displaystyle{ N, D\in R }[/math], D is squarefree of even degree and coprime to N, the prime factorization of [math]\displaystyle{ N }[/math] is [math]\displaystyle{ \prod_\ell \ell^{\alpha_\ell} }[/math]. We take [math]\displaystyle{ \Gamma_0(N) }[/math] to the set [math]\displaystyle{ \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma \mid c \equiv 0 \bmod N \right\}, }[/math] [math]\displaystyle{ S_0(\Gamma_0(N)) }[/math] to be the set of all cusp forms of level N and depth 0. Suppose that, [math]\displaystyle{ \varphi, \varphi_1, \varphi_2 \in S_0(\Gamma_0(N)) }[/math].
Definition 1. Let [math]\displaystyle{ \left (\frac{c} {d} \right ) }[/math] be the Legendre symbol of c modulo d, [math]\displaystyle{ \widetilde{SL}_2(k_\infty) = Mp_2(k_\infty) }[/math]. Metaplectic morphism [math]\displaystyle{ \eta : SL_2(R) \to \widetilde{SL}_2(k_\infty), \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \left( \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \left (\frac{c} {d} \right )\right). }[/math]
Definition 2. Let [math]\displaystyle{ z = x + iy \in \mathcal{H}, d\mu = \frac{dx\,dy} {\left \vert y \right \vert^2} }[/math]. Petersson inner product [math]\displaystyle{ \langle \varphi_1, \varphi_2\rangle = [\Gamma : \Gamma_0(N)]^{-1} \int_{\Gamma_0(N) \backslash \mathcal{H}} \varphi_1(z) \overline{\varphi_2(z)} \, d\mu. }[/math]
Definition 3. Let [math]\displaystyle{ n, P \in R }[/math]. Gauss sum [math]\displaystyle{ G_n(P) = \sum_{r \in R/PR} \left (\frac{r} {P} \right ) e(rnT^2). }[/math]
Let [math]\displaystyle{ \lambda_{\infty, \varphi} }[/math] be the Laplace eigenvalue of [math]\displaystyle{ \varphi }[/math]. There is a constant [math]\displaystyle{ \theta \in \mathbb{R} }[/math] such that [math]\displaystyle{ \lambda_{\infty, \varphi} = \frac { e^{-i\theta} + e^{i\theta} } { \sqrt{p} }. }[/math]
Definition 4. Assume that [math]\displaystyle{ v_\infty(a/b) = \deg(a) - \deg(b), \nu = v_\infty(y) }[/math]. Whittaker function [math]\displaystyle{ W_{0, i\theta}(y) = \begin{cases} \frac{ \sqrt{p} } { e^{i\theta} - e^{-i\theta} } \left[ \left(\frac{ e^{i\theta} } { \sqrt{p} }\right)^{\nu - 1} - \left(\frac{ e^{-i\theta} } { \sqrt{p} }\right)^{\nu - 1} \right], & \text{when } \nu \geq 2; \\ 0, & \text{otherwise}. \end{cases} }[/math]
Definition 5. Fourier–Whittaker expansion [math]\displaystyle{ \varphi(z) = \sum_{ r \in R } \omega_\varphi(r) e(rxT^2) W_{0, i\theta}(y). }[/math] One calls [math]\displaystyle{ \omega_\varphi(r) }[/math] the Fourier–Whittaker coefficients of [math]\displaystyle{ \varphi }[/math].
Definition 6. Atkin–Lehner operator [math]\displaystyle{ W_{\alpha_\ell} = \begin{pmatrix} \ell^{\alpha_\ell} & b \\ N & \ell^{\alpha_\ell}d \end{pmatrix} }[/math] with [math]\displaystyle{ \ell^{2\alpha_\ell}d - bN = \ell^{\alpha_\ell}. }[/math]
Definition 7. Assume that, [math]\displaystyle{ \varphi }[/math] is a Hecke eigenform. Atkin–Lehner eigenvalue [math]\displaystyle{ w_{\alpha_\ell, \varphi} = \frac{ \varphi(W_{\alpha_\ell}z) } { \varphi(z) } }[/math] with [math]\displaystyle{ w_{\alpha_\ell, \varphi} = \pm 1. }[/math]
Definition 8. [math]\displaystyle{ L(\varphi, s) = \sum_{r \in R \backslash \{0\} } \frac{ \omega_\varphi(r) } { \left \vert r \right \vert_p^s }. }[/math]
Let [math]\displaystyle{ \widetilde{S}_0(\widetilde{\Gamma}_0(N)) }[/math] be the metaplectic version of [math]\displaystyle{ S_0(\Gamma_0(N)) }[/math], [math]\displaystyle{ \{ E_1, \ldots, E_d \} }[/math] be a nice Hecke eigenbasis for [math]\displaystyle{ \widetilde{S}_0(\widetilde{\Gamma}_0(N)) }[/math] with respect to the Petersson inner product. We note the Shimura correspondence by [math]\displaystyle{ \operatorname{Sh}. }[/math]
Theorem [ ( Altug Tsimerman ), Thm 5.1, p. 60 ]. Suppose that [math]\displaystyle{ K_\varphi = \frac 1 { \sqrt{p} \left( \sqrt{p} - e^{-i\theta} \right) \left( \sqrt{p} - e^{i\theta} \right) } }[/math], [math]\displaystyle{ \chi_D }[/math] is a quadratic character with [math]\displaystyle{ \Delta(\chi_D) = D }[/math]. Then [math]\displaystyle{ \sum_{\operatorname{Sh}(E_i) = \varphi} \left \vert \omega_{E_i}(D) \right \vert_p^2 = \frac{ K_\varphi G_1(D) \left \vert D \right \vert_p^{-3/2} } { \langle \varphi, \varphi\rangle } L(\varphi \otimes \chi_D, 1/2) \prod_\ell \left( 1 + \left (\frac{ \ell^{\alpha_\ell} } D \right ) w_{\alpha_\ell, \varphi} \right). }[/math]
References
- ↑ ( Waldspurger 1985 ), Thm 4, p. 235
- Waldspurger, Jean-Loup (1985), "Sur les valeurs de certaines L-fonctions automorphes en leur centre de symétrie", Compositio Mathematica 54 (2): 173–242
- Vignéras, Marie-France (1981), "Valeur au centre de symétrie des fonctions L associées aux formes modulaire", Séminarie de Théorie des Nombres, Paris 1979–1980, Progress in Math., Birkhäuser, pp. 331–356
- Shimura, Gorô (1976), "On special values of zeta functions associated with cusp forms", Communications on Pure and Applied Mathematics 29: 783–804, doi:10.1002/cpa.3160290618
- Altug, Salim Ali; Tsimerman, Jacob (2010). "Metaplectic Ramanujan conjecture over function fields with applications to quadratic forms". International Mathematics Research Notices. doi:10.1093/imrn/rnt047.
- Langlands, Robert (1970). On the Functional Equation of the Artin L-Functions.
- Deligne, Pierre (1972). "Les constantes des équations fonctionelle des fonctions L". International Summer School on Modular functions. Antwerp. pp. 501–597.
Original source: https://en.wikipedia.org/wiki/Waldspurger formula.
Read more |