Weakly dependent random variables

From HandWiki

In probability, weak dependence of random variables is a generalization of independence that is weaker than the concept of a martingale[citation needed]. A (time) sequence of random variables is weakly dependent if distinct portions of the sequence have a covariance that asymptotically decreases to 0 as the blocks are further separated in time. Weak dependence primarily appears as a technical condition in various probabilistic limit theorems.

Formal definition

Fix a set S, a sequence of sets of measurable functions {d}d=1d=1(Sd), a decreasing sequence {θδ}δ=10, and a function ψ2×(+)2+. A sequence {Xn}n=1 of random variables is ({d}d=1,{θδ}δ,ψ)-weakly dependent iff, for all j1j2jd<jd+δk1k2ke, for all ϕd, and θe, we have[1]: 315 

|Cov(ϕ(Xj1,,Xjd),θ(Xk1,,Xke))|ψ(ϕ,θ,d,e)θδ

Note that the covariance does not decay to 0 uniformly in d and e.[2]: 9 

Common applications

Weak dependence is a sufficient weak condition that many natural instances of stochastic processes exhibit it.[2]: 9  In particular, weak dependence is a natural condition for the ergodic theory of random functions.[3]

A sufficient substitute for independence in the Lindeberg–Lévy central limit theorem is weak dependence.[1]: 315  For this reason, specializations often appear in the probability literature on limit theorems.[2]: 153–197  These include Withers' condition for strong mixing,[1][4] Tran's "absolute regularity in the locally transitive sense,"[5] and Birkel's "asymptotic quadrant independence."[6]

Weak dependence also functions as a substitute for strong mixing.[7] Again, generalizations of the latter are specializations of the former; an example is Rosenblatt's mixing condition.[8]

Other uses include a generalization of the Marcinkiewicz–Zygmund inequality and Rosenthal inequalities.[1]: 314, 319 

Martingales are weakly dependent [citation needed], so many results about martingales also hold true for weakly dependent sequences. An example is Bernstein's bound on higher moments, which can be relaxed to only require[9][10]

E[XiX1,,Xi1]=0,E[Xi2X1,,Xi1]RiE[Xi2],E[XikX1,,Xi1]12E[Xi2X1,,Xi1]Lk2k!

See also

References

  1. 1.0 1.1 1.2 1.3 Doukhan, Paul; Louhichi, Sana (1999-12-01). "A new weak dependence condition and applications to moment inequalities" (in en). Stochastic Processes and Their Applications 84 (2): 313–342. doi:10.1016/S0304-4149(99)00055-1. ISSN 0304-4149. 
  2. 2.0 2.1 2.2 Dedecker, Jérôme; Doukhan, Paul; Lang, Gabriel; Louhichi, Sana; Leon, José Rafael; José Rafael, León R.; Prieur, Clémentine (2007) (in en-gb). Weak Dependence: With Examples and Applications. Lecture Notes in Statistics. 190. doi:10.1007/978-0-387-69952-3. ISBN 978-0-387-69951-6. 
  3. Wu, Wei Biao; Shao, Xiaofeng (June 2004). "Limit theorems for iterated random functions" (in en). Journal of Applied Probability 41 (2): 425–436. doi:10.1239/jap/1082999076. ISSN 0021-9002. 
  4. Withers, C. S. (December 1981). "Conditions for linear processes to be strong-mixing" (in en). Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 57 (4): 477–480. doi:10.1007/bf01025869. ISSN 0044-3719. 
  5. Tran, Lanh Tat (1990). "Recursive kernel density estimators under a weak dependence condition" (in en). Annals of the Institute of Statistical Mathematics 42 (2): 305–329. doi:10.1007/bf00050839. ISSN 0020-3157. 
  6. Birkel, Thomas (1992-07-11). "Laws of large numbers under dependence assumptions" (in en). Statistics & Probability Letters 14 (5): 355–362. doi:10.1016/0167-7152(92)90096-N. ISSN 0167-7152. 
  7. Wu, Wei Biao (2005-10-04). "Nonlinear system theory: Another look at dependence" (in en). Proceedings of the National Academy of Sciences 102 (40): 14150–14154. doi:10.1073/pnas.0506715102. ISSN 0027-8424. PMID 16179388. Bibcode2005PNAS..10214150W. 
  8. Rosenblatt, M. (1956-01-01). "A Central Limit Theorem and a Strong Mixing Condition" (in en). Proceedings of the National Academy of Sciences 42 (1): 43–47. doi:10.1073/pnas.42.1.43. ISSN 0027-8424. PMID 16589813. Bibcode1956PNAS...42...43R. 
  9. Fan, X.; Grama, I.; Liu, Q. (2015). "Exponential inequalities for martingales with applications". Electronic Journal of Probability 20: 1–22. doi:10.1214/EJP.v20-3496. 
  10. Bernstein, Serge (December 1927). "Sur l'extension du théorème limite du calcul des probabilités aux sommes de quantités dépendantes" (in fr). Mathematische Annalen 97 (1): 1–59. doi:10.1007/bf01447859. ISSN 0025-5831.