Comparison triangle: Difference between revisions
(change) |
(change) |
||
Line 1: | Line 1: | ||
In metric geometry, comparison triangles are constructions used to define [[CAT(k) space|higher bounds on curvature]] in the framework of locally geodesic metric spaces, thereby playing a similar role to that of higher bounds on [[Sectional curvature|sectional curvature]] in [[Riemannian geometry]]. | |||
== Definitions == | |||
The interior angle of <math>T*</math> at <math>p'</math> is called the '''comparison angle''' between <math>q</math> and <math>r</math> at <math>p</math>. This is well-defined provided <math>q</math> and <math>r</math> are both distinct from <math>p</math>. | === Comparison triangles === | ||
Let <math display="inline">M_{0}^{2} = \mathbb{E}^2</math> be the [[Euclidean plane|euclidean plane]], <math display="inline">M_{1}^{2} = \mathbb{S}^2</math> be the [[Unit sphere|unit 2-sphere]], and <math display="inline">M_{-1}^{2} = \mathbb{H}^2</math> be the [[Hyperbolic geometry|hyperbolic plane]]. For <math display="inline">k > 0</math>, let <math display="inline">M_{k}^{2}</math> and <math display="inline">M_{-k}^{2}</math> denote the spaces obtained, respectively, from <math display="inline">M_{1}^{2}</math> and <math display="inline">M_{-1}^{2}</math> by multiplying the distance by <math display="inline">\frac{1}{\sqrt{|k|}}</math>. For any <math display="inline">k\in \R</math>, <math display="inline">M_{k}^{2}</math> is the unique complete, [[Simply connected space|simply-connected]], 2-dimensional [[Riemannian manifold]] of constant sectional curvature <math display="inline">k</math>. | |||
Let <math>X</math> be a [[Metric space|metric space]]. Let <math>T</math> be a geodesic triangle in <math>X</math>, i.e. three points <math>p</math>, <math>q</math> and <math>r</math> and three geodesic segments <math display="inline">[p, q]</math>, <math display="inline">[q, r]</math> and <math display="inline">[r, p]</math>. A '''comparison triangle''' <math>T*</math> in <math display="inline">M_{k}^{2}</math> for <math>T</math> is a geodesic triangle in <math display="inline">M_{k}^{2}</math> with vertices <math>p'</math>, <math>q'</math> and <math>r'</math> such that <math display="inline">d(p,q) = d(p',q')</math>, <math display="inline">d(p,r) = d(p',r')</math> and <math display="inline">d(r,q) = d(r',q')</math>. | |||
Such a triangle, when it exists, is unique up to [[Isometry|isometry]]. The existence is always true for <math display="inline">k\le 0</math>. For <math display="inline">k > 0</math>, it can be ensured by the additional condition <math display="inline">d(p, q) + d(q, r) + d(r, p) \le \frac{2\pi}{\sqrt{k}}</math> (i.e. the length of the triangle does not exceed that of a [[Great circle|great circle]] of the sphere <math display="inline">M_{k}^{2}</math>). | |||
==== Comparison angles ==== | |||
The interior angle of <math display="inline">T*</math> at <math display="inline">p'</math> is called the '''comparison angle''' between <math display="inline">q</math> and <math display="inline">r</math> at <math display="inline">p</math>. This is well-defined provided <math display="inline">q</math> and <math display="inline">r</math> are both distinct from <math display="inline">p</math>, and only depends on the lengths <math display="inline">d(p, q), d(q, r), d(p, r)</math>. Let it be denoted by <math display="inline">\overline{\angle}_{p, q, r}^{(k)}</math>. Using inverse trigonometry, one has the formulas:<math display="block">\cos(\overline{\angle}_{p, q, r}^{(0)}) = \frac{d(q, r)^2 - d(p, q)^2 - d(p, r)^2}{2d(p, q)d(p, r)},</math><math display="block">\cos(\overline{\angle}_{p, q, r}^{(k)}) = \frac{\cos(\sqrt{k}d(q, r)) - \cos(\sqrt{k}d(p, q))\cos(\sqrt{k}d(p, r))}{\sin(\sqrt{k}d(p, q))\sin(\sqrt{k}d(p, r))} ~~ \text{for} ~~ k > 0,</math><math display="block">\cos(\overline{\angle}_{p, q, r}^{(k)}) = \frac{\cosh(\sqrt{-k}d(p, q))\cosh(\sqrt{-k}d(p, r)) - \cosh(\sqrt{-k}d(q, r))}{\sinh(\sqrt{-k}d(p, q))\sinh(\sqrt{-k}d(p, r))} ~~ \text{for} ~~ {k < 0}.</math> | |||
==== Alexandrov angles ==== | |||
Comparison angles provide notions of angles between geodesics that make sense in arbitrary metric spaces. The '''Alexandrov angle''', or '''outer angle''', between two nontrivial geodesics <math display="inline">c, c'</math> with <math display="inline">c(0) = c'(0)</math> is defined as<math display="block">\angle_{c, c'} = \limsup_{t, t' \rightarrow 0} \overline{\angle}_{c(0), c(t), c'(t')}.</math> | |||
=== Comparison tripods === | |||
{{See also|Hyperbolic metric space}} | |||
The following similar construction, which appears in certain possible definitions of Gromov-hyperbolicity, may be regarded as a limit case when <math display="inline">k\rightarrow -\infty</math>. | |||
For three points <math display="inline">x, y, z</math> in a metric space <math display="inline">X</math>, the [[Gromov product]] of <math display="inline">x</math> and <math display="inline">y</math> at <math display="inline">z</math> is half of the [[Triangle inequality|triangle inequality]] defect:<math display="block">(x, y)_z = \frac{1}{2}(d(x, z) + d(y, z) - d(x, y))</math>Given a geodesic triangle <math display="inline">\Delta</math> in <math display="inline">X</math> with vertices <math display="inline">(p, q, r)</math>, the '''comparison tripod''' <math display="inline">T_\Delta</math> for <math display="inline">\Delta</math> is the metric graph obtained by gluing three segments <math display="inline">[p', c_p], [q', c_q], [r', c_r]</math> of respective lengths <math display="inline">(q, r)_p, (r, p)_q, (p, q)_r</math> along a vertex <math display="inline">c</math>, setting <math display="inline">c_p = c_q = c_r = c</math>. | |||
One has <math display="inline">d(p', q') = d(p, q),~~d(q', r') = d(q, r),~~d(r', p') = d(r, p),</math> and <math display="inline">T_\Delta</math> is the union of the three unique geodesic segments <math display="inline">[p', q'], [q', r'], [r', p']</math>. Furthermore, there is a well-defined comparison map <math display="inline">f_\Delta: \Delta \longrightarrow T_\Delta</math> with <math display="inline">f_\Delta(p) = p', f_\Delta(q) = q', f_\Delta(r) = r',</math> such that <math display="inline">f_\Delta</math> is [[Isometry|isometric]] on each side of <math display="inline">\Delta</math>. The vertex <math display="inline">c</math> is called the '''center''' of <math display="inline">T_\Delta</math>, and its preimage under <math display="inline">f_\Delta</math> is called the '''center''' of <math display="inline">\Delta</math>, its points the '''internal points''' of <math display="inline">\Delta</math>, and its [[Metric space#Diameter of a metric space|diameter]] the '''insize''' of <math display="inline">\Delta</math>. | |||
One way to formulate Gromov-hyperbolicity is to require <math display="inline">f_\Delta</math> not to change the distances by more than a constant <math display="inline">\delta \ge 0</math>. Another way is to require the insizes of triangles <math display="inline">\Delta</math> to be bounded above by a uniform constant <math display="inline">\delta' \ge 0</math>. | |||
Equivalently, a tripod is a comparison triangle in a universal [[Real tree|real tree]] of valence <math display="inline">\ge 3</math>. Such trees appear as [[Ultralimit#Ultralimit of metric spaces with specified base-points|ultralimits]] of the <math display="inline">M_{k}^{2}</math> as <math display="inline">k\rightarrow -\infty</math>.<ref>{{Cite web |last=Druţu |first=Cornelia |last2=Kapovich |first2=Michael |date=2018-03-28 |title=Geometric Group Theory |url=http://www.ams.org/books/coll/063/ |access-date=2024-12-10 |website=American Mathematical Society |language=en}}</ref> | |||
== The CAT(k) condition == | |||
{{Main article|CAT(k) space}} | |||
== The Alexandrov lemma == | |||
In various situations, the '''Alexandrov lemma''' (also called the '''triangle gluing lemma''') allows one to decompose a geodesic triangle into smaller triangles for which proving the CAT(k) condition is easier, and then deduce the CAT(k) condition for the bigger triangle. This is done by gluing together comparison triangles for the smaller triangles and then "unfolding" the figure into a comparison triangle for the bigger triangle. | |||
==References== | ==References== | ||
{{Reflist}} | |||
* M Bridson & A Haefliger - ''Metric Spaces Of Non-Positive [[Curvature]]'', {{ISBN|3-540-64324-9}} | * M Bridson & A Haefliger - ''Metric Spaces Of Non-Positive [[Curvature]]'', {{ISBN|3-540-64324-9}} | ||
[[Category:Metric geometry]] | [[Category:Metric geometry]] | ||
{{Sourceattribution|Comparison triangle}} | {{Sourceattribution|Comparison triangle}} |
Latest revision as of 07:45, 26 April 2025
In metric geometry, comparison triangles are constructions used to define higher bounds on curvature in the framework of locally geodesic metric spaces, thereby playing a similar role to that of higher bounds on sectional curvature in Riemannian geometry.
Definitions
Comparison triangles
Let [math]\displaystyle{ M_{0}^{2} = \mathbb{E}^2 }[/math] be the euclidean plane, [math]\displaystyle{ M_{1}^{2} = \mathbb{S}^2 }[/math] be the unit 2-sphere, and [math]\displaystyle{ M_{-1}^{2} = \mathbb{H}^2 }[/math] be the hyperbolic plane. For [math]\displaystyle{ k \gt 0 }[/math], let [math]\displaystyle{ M_{k}^{2} }[/math] and [math]\displaystyle{ M_{-k}^{2} }[/math] denote the spaces obtained, respectively, from [math]\displaystyle{ M_{1}^{2} }[/math] and [math]\displaystyle{ M_{-1}^{2} }[/math] by multiplying the distance by [math]\displaystyle{ \frac{1}{\sqrt{|k|}} }[/math]. For any [math]\displaystyle{ k\in \R }[/math], [math]\displaystyle{ M_{k}^{2} }[/math] is the unique complete, simply-connected, 2-dimensional Riemannian manifold of constant sectional curvature [math]\displaystyle{ k }[/math].
Let [math]\displaystyle{ X }[/math] be a metric space. Let [math]\displaystyle{ T }[/math] be a geodesic triangle in [math]\displaystyle{ X }[/math], i.e. three points [math]\displaystyle{ p }[/math], [math]\displaystyle{ q }[/math] and [math]\displaystyle{ r }[/math] and three geodesic segments [math]\displaystyle{ [p, q] }[/math], [math]\displaystyle{ [q, r] }[/math] and [math]\displaystyle{ [r, p] }[/math]. A comparison triangle [math]\displaystyle{ T* }[/math] in [math]\displaystyle{ M_{k}^{2} }[/math] for [math]\displaystyle{ T }[/math] is a geodesic triangle in [math]\displaystyle{ M_{k}^{2} }[/math] with vertices [math]\displaystyle{ p' }[/math], [math]\displaystyle{ q' }[/math] and [math]\displaystyle{ r' }[/math] such that [math]\displaystyle{ d(p,q) = d(p',q') }[/math], [math]\displaystyle{ d(p,r) = d(p',r') }[/math] and [math]\displaystyle{ d(r,q) = d(r',q') }[/math].
Such a triangle, when it exists, is unique up to isometry. The existence is always true for [math]\displaystyle{ k\le 0 }[/math]. For [math]\displaystyle{ k \gt 0 }[/math], it can be ensured by the additional condition [math]\displaystyle{ d(p, q) + d(q, r) + d(r, p) \le \frac{2\pi}{\sqrt{k}} }[/math] (i.e. the length of the triangle does not exceed that of a great circle of the sphere [math]\displaystyle{ M_{k}^{2} }[/math]).
Comparison angles
The interior angle of [math]\displaystyle{ T* }[/math] at [math]\displaystyle{ p' }[/math] is called the comparison angle between [math]\displaystyle{ q }[/math] and [math]\displaystyle{ r }[/math] at [math]\displaystyle{ p }[/math]. This is well-defined provided [math]\displaystyle{ q }[/math] and [math]\displaystyle{ r }[/math] are both distinct from [math]\displaystyle{ p }[/math], and only depends on the lengths [math]\displaystyle{ d(p, q), d(q, r), d(p, r) }[/math]. Let it be denoted by [math]\displaystyle{ \overline{\angle}_{p, q, r}^{(k)} }[/math]. Using inverse trigonometry, one has the formulas:[math]\displaystyle{ \cos(\overline{\angle}_{p, q, r}^{(0)}) = \frac{d(q, r)^2 - d(p, q)^2 - d(p, r)^2}{2d(p, q)d(p, r)}, }[/math][math]\displaystyle{ \cos(\overline{\angle}_{p, q, r}^{(k)}) = \frac{\cos(\sqrt{k}d(q, r)) - \cos(\sqrt{k}d(p, q))\cos(\sqrt{k}d(p, r))}{\sin(\sqrt{k}d(p, q))\sin(\sqrt{k}d(p, r))} ~~ \text{for} ~~ k \gt 0, }[/math][math]\displaystyle{ \cos(\overline{\angle}_{p, q, r}^{(k)}) = \frac{\cosh(\sqrt{-k}d(p, q))\cosh(\sqrt{-k}d(p, r)) - \cosh(\sqrt{-k}d(q, r))}{\sinh(\sqrt{-k}d(p, q))\sinh(\sqrt{-k}d(p, r))} ~~ \text{for} ~~ {k \lt 0}. }[/math]
Alexandrov angles
Comparison angles provide notions of angles between geodesics that make sense in arbitrary metric spaces. The Alexandrov angle, or outer angle, between two nontrivial geodesics [math]\displaystyle{ c, c' }[/math] with [math]\displaystyle{ c(0) = c'(0) }[/math] is defined as[math]\displaystyle{ \angle_{c, c'} = \limsup_{t, t' \rightarrow 0} \overline{\angle}_{c(0), c(t), c'(t')}. }[/math]
Comparison tripods
The following similar construction, which appears in certain possible definitions of Gromov-hyperbolicity, may be regarded as a limit case when [math]\displaystyle{ k\rightarrow -\infty }[/math].
For three points [math]\displaystyle{ x, y, z }[/math] in a metric space [math]\displaystyle{ X }[/math], the Gromov product of [math]\displaystyle{ x }[/math] and [math]\displaystyle{ y }[/math] at [math]\displaystyle{ z }[/math] is half of the triangle inequality defect:[math]\displaystyle{ (x, y)_z = \frac{1}{2}(d(x, z) + d(y, z) - d(x, y)) }[/math]Given a geodesic triangle [math]\displaystyle{ \Delta }[/math] in [math]\displaystyle{ X }[/math] with vertices [math]\displaystyle{ (p, q, r) }[/math], the comparison tripod [math]\displaystyle{ T_\Delta }[/math] for [math]\displaystyle{ \Delta }[/math] is the metric graph obtained by gluing three segments [math]\displaystyle{ [p', c_p], [q', c_q], [r', c_r] }[/math] of respective lengths [math]\displaystyle{ (q, r)_p, (r, p)_q, (p, q)_r }[/math] along a vertex [math]\displaystyle{ c }[/math], setting [math]\displaystyle{ c_p = c_q = c_r = c }[/math].
One has [math]\displaystyle{ d(p', q') = d(p, q),~~d(q', r') = d(q, r),~~d(r', p') = d(r, p), }[/math] and [math]\displaystyle{ T_\Delta }[/math] is the union of the three unique geodesic segments [math]\displaystyle{ [p', q'], [q', r'], [r', p'] }[/math]. Furthermore, there is a well-defined comparison map [math]\displaystyle{ f_\Delta: \Delta \longrightarrow T_\Delta }[/math] with [math]\displaystyle{ f_\Delta(p) = p', f_\Delta(q) = q', f_\Delta(r) = r', }[/math] such that [math]\displaystyle{ f_\Delta }[/math] is isometric on each side of [math]\displaystyle{ \Delta }[/math]. The vertex [math]\displaystyle{ c }[/math] is called the center of [math]\displaystyle{ T_\Delta }[/math], and its preimage under [math]\displaystyle{ f_\Delta }[/math] is called the center of [math]\displaystyle{ \Delta }[/math], its points the internal points of [math]\displaystyle{ \Delta }[/math], and its diameter the insize of [math]\displaystyle{ \Delta }[/math].
One way to formulate Gromov-hyperbolicity is to require [math]\displaystyle{ f_\Delta }[/math] not to change the distances by more than a constant [math]\displaystyle{ \delta \ge 0 }[/math]. Another way is to require the insizes of triangles [math]\displaystyle{ \Delta }[/math] to be bounded above by a uniform constant [math]\displaystyle{ \delta' \ge 0 }[/math].
Equivalently, a tripod is a comparison triangle in a universal real tree of valence [math]\displaystyle{ \ge 3 }[/math]. Such trees appear as ultralimits of the [math]\displaystyle{ M_{k}^{2} }[/math] as [math]\displaystyle{ k\rightarrow -\infty }[/math].[1]
The CAT(k) condition
The Alexandrov lemma
In various situations, the Alexandrov lemma (also called the triangle gluing lemma) allows one to decompose a geodesic triangle into smaller triangles for which proving the CAT(k) condition is easier, and then deduce the CAT(k) condition for the bigger triangle. This is done by gluing together comparison triangles for the smaller triangles and then "unfolding" the figure into a comparison triangle for the bigger triangle.
References
- ↑ Druţu, Cornelia; Kapovich, Michael (2018-03-28). "Geometric Group Theory" (in en). http://www.ams.org/books/coll/063/.
![]() | Original source: https://en.wikipedia.org/wiki/Comparison triangle.
Read more |