Absolute Infinite

From HandWiki
Revision as of 04:29, 27 June 2023 by Steve2012 (talk | contribs) (link)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Short description: Biggest number ever imagined

The Absolute Infinite (symbol: Ω) is an extension of the idea of infinity proposed by mathematician Georg Cantor.

It can be thought of as a number that is bigger than any other conceivable or inconceivable quantity, either finite or transfinite.

Cantor linked the Absolute Infinite with God,Cite error: Closing </ref> missing for <ref> tag this is in fact an amalgamation by Cantor's editor, Ernst Zermelo, of two letters from Cantor to Dedekind, the first dated July 28 and the second dated August 3.|name=GesammelteAbhandlungen}}

A multiplicity [he appears to mean what we now call a set] is called well-ordered if it fulfills the condition that every sub-multiplicity has a first element; such a multiplicity I call for short a "sequence".
...
Now I envisage the system of all [ordinal] numbers and denote it Ω.
...
The system Ω in its natural ordering according to magnitude is a "sequence".
Now let us adjoin 0 as an additional element to this sequence, and place it, obviously, in the first position; then we obtain a sequence Ω:
0, 1, 2, 3, ... ω0, ω0+1, ..., γ, ...
of which one can readily convince oneself that every number γ occurring in it is the type [i.e., order-type] of the sequence of all its preceding elements (including 0). (The sequence Ω has this property first for ω0+1. [ω0+1 should be ω0.])

Now Ω (and therefore also Ω) cannot be a consistent multiplicity. For if Ω were consistent, then as a well-ordered set, a number δ would correspond to it which would be greater than all numbers of the system Ω; the number δ, however, also belongs to the system Ω, because it comprises all numbers. Thus δ would be greater than δ, which is a contradiction. Therefore:

The system Ω of all [ordinal] numbers is an inconsistent, absolutely infinite multiplicity.

The Burali-Forti paradox

Main page: Burali-Forti paradox

The idea that the collection of all ordinal numbers cannot logically exist seems paradoxical to many. This is related to Cesare Burali-Forti's "paradox" which states that there can be no greatest ordinal number. All of these problems can be traced back to the idea that, for every property that can be logically defined, there exists a set of all objects that have that property. However, as in Cantor's argument (above), this idea leads to difficulties.

More generally, as noted by A. W. Moore, there can be no end to the process of set formation, and thus no such thing as the totality of all sets, or the set hierarchy. Any such totality would itself have to be a set, thus lying somewhere within the hierarchy and thus failing to contain every set.

A standard solution to this problem is found in Zermelo's set theory, which does not allow the unrestricted formation of sets from arbitrary properties. Rather, we may form the set of all objects that have a given property and lie in some given set (Zermelo's Axiom of Separation). This allows for the formation of sets based on properties, in a limited sense, while (hopefully) preserving the consistency of the theory.

While this solves the logical problem, one could argue that the philosophical problem remains. It seems natural that a set of individuals ought to exist, so long as the individuals exist. Indeed, naive set theory might be said to be based on this notion. Although Zermelo's fix allows a class to describe arbitrary (possibly "large") entities, these predicates of the meta-language may have no formal existence (i.e., as a set) within the theory. For example, the class of all sets would be a proper class. This is philosophically unsatisfying to some and has motivated additional work in set theory and other methods of formalizing the foundations of mathematics such as New Foundations by Willard Van Orman Quine.

See also

Notes

Bibliography