Medicine:Knee cartilage replacement therapy
Knee cartilage replacement therapy | |
---|---|
Specialty | orthopedic |
Articular cartilage, most notably that which is found in the knee joint, is generally characterized by very low friction, high wear resistance, and poor regenerative qualities. It is responsible for much of the compressive resistance and load bearing qualities of the knee joint and, without it, walking is painful to impossible. Osteoarthritis is a common condition of cartilage failure that can lead to limited range of motion, bone damage and invariably, pain. Due to a combination of acute stress and chronic fatigue, osteoarthritis directly manifests itself in a wearing away of the articular surface and, in extreme cases, bone can be exposed in the joint. Some additional examples of cartilage failure mechanisms include cellular matrix linkage rupture, chondrocyte protein synthesis inhibition, and chondrocyte apoptosis. There are several different repair options available for cartilage damage or failure.
"Maci" or autologous cultured chondrocytes on porcine collagen membrane, is a treatment to correct cartilage defects in the knee. This treatment has been approved by the Food and Drug Administration in 2016 for adult treatment only.[1]
Autologous matrix-induced chondrogenesis
Autologous matrix-induced chondrogenesis, which is also known as AMIC, is a biological treatment option for articular cartilage damage bone marrow stimulating technique in combination with a collagen membrane. It is based on the microfracture surgery with the application of a bi-layer collagen I/III membrane.
The AMIC technique was developed to improve some of the shortfalls of microfracture surgery such as variable repair cartilage volume and functional deterioration over time. The collagen membrane protects and stabilizes the MSCs released through microfracture and enhances their chondrogenic differentiation.
The AMIC surgery is a single-step procedure. Once cartilage damage is assessed there are two methods to access the joint to proceed with the AMIC surgery. First is to perform a mini arthrotomy. Second is an all-arthroscopic procedure.[2]
Autologous chondrocyte implantation
The human body's own cartilage is still the best material for lining knee joints. This drives efforts to develop ways of using a person's own cells to grow, or re-grow cartilage tissue to replace missing or damaged cartilage. One cell-based replacement technique is called autologous chondrocyte implantation (ACI) or autologous chondrocyte transplantation (ACT).
A review evaluating autologous chondrocyte implantation was published in 2010. The conclusions are that it is an effective treatment for full thickness chondral defects. The evidence does not suggest ACI is superior to other treatments.[3]
One ACI treatment, called MACI (autologous cultured chondrocytes on a porcine collagen matrix), is indicated for healthy patients 18–55 with medium to large sized damage to their cartilage. It is not applicable to osteoarthritis patients. The patient's chondrocytes are removed arthroscopically from a non load-bearing area from either the intercondylar notch or the superior ridge of the medial or lateral femoral condyles. 10,000 cells are harvested and grown in vitro for approximately six weeks until the population reaches 10-12 million cells. Then these cells are seeded onto a film that is implanted into the area of cartilage damage and absorbed back into the tissue into the patient. The implanted chondrocytes then divide and integrate with surrounding tissue and potentially generate hyaline-like cartilage.
Another ACI technique, using "chondospheres", uses only chondrocytes and no matrix material. The cells grow in self-organized spheroid matrices which are implanted via injected fluid or inserted tissue matrix.[4]
Techniques such as the EELS-TALC [5] to enhance ACI and MACI with enabling chondrocytes to be tissue engineered with long term native knee cartilage phenotype maintenance in vitro and in vivo,[6][7] with the engineered tissue construct containing stem cell progenitors[8] along with those expressing pluripotency markers[9] and with added advantage of enriched hyaluronic acid (HA) expression[10] by the cells have been reported which will contribute to improvised regenerative therapies for cartilage damage.
Autologous mesenchymal stem cell transplantation
Because mesenchymal stem cells may regenerate cartilage, cartilage growth in human knees using autologous cultured mesenchymal stem cells is under research and preliminary clinical use, and appears to be safe as of 2016.[11] An advantage to this approach is that a person's own stem cells are used, avoiding tissue rejection by the immune system. Stem cells enable surgeons to grow replacement cartilage, which gives the new tissue greater growth potential.[11][12] While there are few long-term studies as of 2018, a history of knee problems[13] and body weight are factors for how well the procedure will work.[14]
Microdrilling augmented with peripheral blood stem cells
A 2011 study reported histologically confirmed hyaline cartilage regrowth in the knee. The successful protocol involved arthroscopic microdrilling/ microfracture surgery followed by postoperative injections of autologous peripheral blood progenitor cells (PBPCs) and hyaluronic acid.[15] The procedure creates a blood clot scaffold on which injected PBPCs can be recruited and enhance chondrogenesis at the site of the contained lesion.
See also
- Meniscal cartilage replacement therapy
- Meniscus transplant
- Spheroids of human autologous matrix-associated chondrocytes
References
- ↑ "FDA approves first autologous cellularized scaffold for the repair of cartilage defects of the knee". US Food and Drug Administration. 13 December 2016. https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm533153.htm.
- ↑ Piontek, Tomasz; Ciemniewska-Gorzela Kinga; Szulc Andrzej; Naczk Jakub; Słomczykowski Michał (30 August 2011). "All-arthroscopic AMIC procedure for repair of cartilage defects of the knee". Knee Surgery, Sports Traumatology, Arthroscopy 20 (5): 922–925. doi:10.1007/s00167-011-1657-z. ISSN 0942-2056. PMID 21910000.
- ↑ Vasiliadis, H.; Wasiak, J.; Salanti, G. (2010). "Autologous chondrocyte implantation for the treatment of cartilage lesions of the knee: a systematic review of randomized studies". Knee Surgery, Sports Traumatology, Arthroscopy 18 (12): 1645–1655. doi:10.1007/s00167-010-1050-3. PMID 20127071.
- ↑ Thermann, H; Driessen, A; Becher, C (March 2008). "Autologous chondrocyte transplantation in the treatment of articular cartilage lesions of the talus" (in de). Orthopade 37 (3, number 3): 232–9. doi:10.1007/s00132-008-1215-7. PMID 18317730.
- ↑ "EELS-TALC". https://www.ncrm.org/myth/eelstalc/.
- ↑ Yasuda, Ayuko (2006). "In vitro culture of chondrocytes in a novel thermoreversible gelation polymer scaffold containing growth factors". Tissue Engineering 12 (5): 1237–1245. doi:10.1089/ten.2006.12.1237. PMID 16771637. https://doi.org/10.1089/ten.2006.12.1237.
- ↑ Arumugam, S (2007). "Transplantation of autologous chondrocytes ex-vivo expanded using Thermoreversible Gelation Polymer in a rabbit model of articular cartilage defect". Journal of Orthopedics 14 (2): 223–225. doi:10.1016/j.jor.2017.01.003. PMID 28203047.
- ↑ Katoh, Shojiro (2021). "A three-dimensional in vitro culture environment of a novel polymer scaffold, yielding chondroprogenitors and mesenchymal stem cells in human chondrocytes derived from osteoarthritis-affected cartilage tissue". Journal of Orthopedics 23: 138–141. doi:10.1016/j.jor.2021.01.005. PMID 33510554.
- ↑ Katoh, Shojiro (2020). "Articular chondrocytes from osteoarthritic knee joints of elderly, in vitro expanded in thermo-reversible gelation polymer (TGP), exhibiting higher UEA-1 expression in lectin microarray". Regenerative Therapy 14: 234–237. doi:10.1016/j.reth.2020.03.006. PMID 32435676.
- ↑ Katoh, Shojiro (2021). "Enhanced expression of hyaluronic acid in osteoarthritis-affected knee-cartilage chondrocytes during three-dimensional in vitro culture in a hyaluronic-acid-retaining polymer scaffold". The Knee 29: 365–373. doi:10.1016/j.knee.2021.02.019. PMID 33690017.
- ↑ 11.0 11.1 Freitag, Julien; Bates, Dan; Boyd, Richard; Shah, Kiran; Barnard, Adele; Huguenin, Leesa; Tenen, Abi (26 May 2016). "Mesenchymal stem cell therapy in the treatment of osteoarthritis: reparative pathways, safety and efficacy – a review". BMC Musculoskeletal Disorders 17 (1): 230. doi:10.1186/s12891-016-1085-9. ISSN 1471-2474. PMID 27229856.
- ↑ Saw, Khay-Yong; Anz, Adam; Jee, Caroline Siew-Yoke; Merican, Shahrin; Ng, Reza Ching-Soong; Roohi, Sharifah A.; Ragavanaidu, Kunaseegaran (April 2013). "Articular cartilage regeneration with autologous peripheral blood stem cells versus hyaluronic acid: A randomized controlled trial". Arthroscopy: The Journal of Arthroscopic and Related Surgery 29 (4): 684–694. doi:10.1016/j.arthro.2012.12.008. PMID 23380230. https://www.arthroscopyjournal.org/article/S0749-8063(12)01899-3/fulltext. Retrieved 19 December 2018.
- ↑ Rinzel, Megan (2022-04-21). "Can I Run After Knee Replacement" (in en-US). https://runinthesun.com/can-i-run-after-knee-replacement/.
- ↑ Pan, F.; Blizzard, L.; Tian, J.; Cicuttini, F.; Winzenberg, T.; Ding, C.; Jones, G. (February 2017). "The interaction between weight and family history of total knee replacement with knee cartilage: a 10-year prospective study". Osteoarthritis and Cartilage 25 (2): 227–233. doi:10.1016/j.joca.2016.10.013. PMID 27789341. https://www.oarsijournal.com/article/S1063-4584(16)30348-X/fulltext. Retrieved 19 December 2018.
- ↑ Saw, KY; Anz A; Merican S; Tay YG; Ragavanaidu K; Jee CS; McGuire DA (April 2011). "Articular cartilage regeneration with autologous peripheral blood progenitor cells and hyaluronic Acid after arthroscopic subchondral drilling: a report of 5 cases with histology". Arthroscopy 27 (4): 493–506. doi:10.1016/j.arthro.2010.11.054. PMID 21334844.
External links
- Minimally Invasive Total Knee Replacement. American Academy of Orthopaedic Surgeons. February 2005.
- Osteochondral Grafting of Articular Cartilage Injury at eMedicine
Original source: https://en.wikipedia.org/wiki/Knee cartilage replacement therapy.
Read more |