Physics:Molière radius

From HandWiki
Revision as of 03:26, 5 February 2024 by AnLinks (talk | contribs) (add)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

The Molière radius is a characteristic constant of a material giving the scale of the transverse dimension of the fully contained electromagnetic showers initiated by an incident high energy electron or photon. By definition, it is the radius of a cylinder containing on average 90% of the shower's energy deposition. Two Molière radii contain 95% of the shower's energy deposition. It is related to the radiation length X0 by the approximate relation RM = 0.0265 X0 (Z + 1.2), where Z is the atomic number.[1] The Molière radius is useful in experimental particle physics in the design of calorimeters: a smaller Molière radius means better shower position resolution, and better shower separation due to a smaller degree of shower overlaps.

The Molière radius is named after German physicist Paul Friederich Gaspard Gert Molière (1909–64).[2]

Molière radii for typical materials used in calorimetry

References

  1. Molière Radius
  2. Phillip R. Sloan, Brandon Fogel, "Creating a Physical Biology: The Three-Man Paper and Early Molecular Biology" University of Chicago Press, 2011
  3. Collaboration, PIONEER; et al. (2022). "Testing Lepton Flavor Universality and CKM Unitarity with Rare Pion Decays in the PIONEER experiment". arXiv:2203.05505 [hep-ex].
  4. The CMS Collaboration (2006). "Chapter 1. Introduction". CMS Physics : Technical Design Report Volume 1: Detector Performance and Software. CERN. p. 14. ISBN 9789290832683. https://cds.cern.ch/record/922757. "CMS has chosen lead tungstate scintillating crystals for its ECAL. These crystals have short radiation (X0 = 0.89 cm) and Moliere (2.2 cm) lengths, are fast (80% of the light is emitted within 25 ns) and radiation hard (up to 10 Mrad)." 
  5. Atomic and nuclear properties of cesium iodide (CsI)
  6. Fanti, V.; Barr, G.D.; Buchholz, P.; Cundy, D.; Doble, N.; Gatignon, L.; Gonidec, A.; Hallgren, B. et al. (May 1994). "Performance of an electromagnetic liquid krypton calorimeter". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 344 (3): 507–520. doi:10.1016/0168-9002(94)90871-0. https://cds.cern.ch/record/256569/files/P00019924.pdf. Retrieved 1 December 2022. 
  7. Atomic and nuclear properties of materials: Liquid argon (Ar) (Ar)
  8. Greisen, Kenneth (1960). "Cosmic Ray Showers". Annual Review of Nuclear Science (Laboratory of Nuclear Studies, Cornell University, Ithaca, N. Y.) 10: 71. doi:10.1146/annurev.ns.10.120160.000431. Bibcode1960ARNPS..10...63G. 
  9. Pierre Auger Collaboration (2009). "Atmospheric effects on extensive air showers observed with the surface detector of the Pierre Auger observatory". Astroparticle Physics 32 (2): 89–99. doi:10.1016/j.astropartphys.2009.06.004. Bibcode2009APh....32...89P.