Chemistry:Nickel niobate
Names | |
---|---|
Other names
Nickel niobium oxide
| |
Identifiers | |
3D model (JSmol)
|
|
| |
Properties | |
Nb2NiO6 | |
Molar mass | 340.50256 g/mol[1] |
Appearance | Yellow powder[2] |
Hazards[3] | |
GHS pictograms | |
GHS Signal word | Danger |
H302, H315, H317, H319, H334, H341, H350, H360, H372, H412 | |
P202, P260, P264, P270, P271, P272, P273, P280, P284, P301+312, P302+352, P304+340, P305+351+338, P308+311Script error: No such module "Preview warning".Category:GHS errors, P342+311, P362+364Script error: No such module "Preview warning".Category:GHS errors, P405, P501 | |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). | |
Infobox references | |
Nickel niobate is a complex oxide which as a solid material has found potential applications in catalysis and lithium batteries.
Properties
Complexes
Nickel niobate has been added to other elements forming bismuth nickel niobate (Bi2O3-NiO-Nb2O5), providing a dense ceramic body at low sintering temperatures. Cubic pyrochlore, tetragonal pyrochlore, and other unknown phases were found.[4]
Single-phase perovskite ceramics of Pb(Ni1/3Nb2/3)O3 (PNN) have been prepared by the columbite precursor method. Dielectric studies showed that ceramic Pb(Ni1/3Nb2/3)O3 is a typical relaxor ferroelectric with properties like those of its single-crystals.[5]
Applications
Nickel niobate has been examined for use as a catalyst to reduce 4-nitrophenol due to a photo-synergistic effect that exploits the synergy between thermal active sites and photogenerated electrons.[6]
Nickel niobate has also been examined in an "open and regular" crystalline form for use as the anode in a lithium ion battery. It forms a porous, nano-scale structure that eliminates the dendrite formation that can cause short circuits and other problems. The material offers energy density of 244 mAh g−1 and retains 80%+ of its capacity across 20k cycles. The manufacturing process is straightforward and does not require a clean room.[7] The anode offers a diffusion coefficient of 10−12 cm2 s−1 at 300 K, which allows fast charging/dischargine at high current densities, yielding capacities of 140 and 50 mAh g−1 for 10 and 100C respectively.[8]
References
- ↑ "NICKEL NIOBATE". https://www.chemicalbook.com/ChemicalProductProperty_EN_CB0251080.htm.
- ↑ "Nickel Niobate | CAS 12059-60-8 | Lorad Chemical Corporation". https://loradchemical.com/products/nickel-niobate.
- ↑ "Nickel Niobate | CAS 12059-60-8 | Lorad Chemical Corporation". https://loradchemical.com/products/nickel-niobate.
- ↑ Cai, Xiukai; Sun, Xiaobo; Pang, Lufeng (May 2017). "Bismuth nickel niobate with small negative temperature coefficients of dielectric constant". 2017 Joint IEEE International Symposium on the Applications of Ferroelectric (ISAF)/International Workshop on Acoustic Transduction Materials and Devices (IWATMD)/Piezoresponse Force Microscopy (PFM). pp. 30–32. doi:10.1109/ISAF.2017.8000204. ISBN 978-1-5090-4737-6. https://ieeexplore.ieee.org/document/8000204.
- ↑ Alberta, Edward F.; Bhalla, Amar S. (2002-05-01). "Low-temperature properties of lead nickel-niobate ceramics" (in en). Materials Letters 54 (1): 47–54. doi:10.1016/S0167-577X(01)00538-9. ISSN 0167-577X. https://www.sciencedirect.com/science/article/pii/S0167577X01005389.
- ↑ Su, Yiguo; Xin, Xin; Wang, Yafang; Wang, Tingting; Wang, Xiaojing (2014-03-25). "Unprecedented catalytic performance in disordered nickel niobate through photo-synergistic promotion" (in en). Chemical Communications 50 (32): 4200–4202. doi:10.1039/C3CC49825E. ISSN 1364-548X. PMID 24626389. https://pubs.rsc.org/en/content/articlelanding/2014/cc/c3cc49825e.
- ↑ Lavars, Nick (2021-11-16). ""Open" structure lithium battery material enables 10x faster charging" (in en-US). https://newatlas.com/energy/open-lithium-ion-battery-anode-material-charge-10x-speed/.
- ↑ Xia, Rui; Zhao, Kangning; Kuo, Liang-Yin; Zhang, Lei; Cunha, Daniel M.; Wang, Yang; Huang, Sizhao; Zheng, Jie et al. (2021). "Nickel Niobate Anodes for High Rate Lithium-Ion Batteries" (in en). Advanced Energy Materials 12: 2102972. doi:10.1002/aenm.202102972. ISSN 1614-6840. https://onlinelibrary.wiley.com/doi/abs/10.1002/aenm.202102972.
External links
- "MatWeb - The Online Materials Information Resource". http://www.matweb.com/errorUser.aspx?msgid=2&ckck=nocheck.
- Zhilun, Gui; Longtu, Li; Hongqing, Lin; Xiaowen, Zhang (1990-01-01). "Low temperature sintering of lead magnesium nickel niobate zirconate titanate (PMN-PNN-PZT) piezoelectric ceramic, with high performances". Ferroelectrics 101 (1): 93–99. doi:10.1080/00150199008016505. ISSN 0015-0193. Bibcode: 1990Fer...101...93Z. https://doi.org/10.1080/00150199008016505.
- Robert, G.; Maeder, M. D.; Damjanovic, D. et al., eds (2001). "Synthesis of lead nickel niobate-lead zirconate titanate solid solutions by a B-site precursor method". Journal of the American Ceramic Society 84 (12): 2869–2872. doi:10.1111/j.1151-2916.2001.tb01107.x. ISSN 0002-7820. https://infoscience.epfl.ch/record/89025?ln=en.
Original source: https://en.wikipedia.org/wiki/Nickel niobate.
Read more |