Astronomy:List of largest cosmic structures

From HandWiki
Revision as of 09:34, 6 February 2024 by Scavis2 (talk | contribs) (fixing)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Short description: none
Galaxy filaments form massive, thread-like structures on the order of millions of light-years. Computer simulation.

This is a list of the largest cosmic structures so far discovered. The unit of measurement used is the light-year (distance traveled by light in one Julian year; approximately 9.46 trillion kilometres).

This list includes superclusters, galaxy filaments and large quasar groups (LQGs). The structures are listed based on their longest dimension.

This list refers only to coupling of matter with defined limits, and not the coupling of matter in general (such as, for example, the cosmic microwave background, which fills the entire universe). All structures in this list are defined as to whether their presiding limits have been identified.

There are some reasons to be cautious about this list:

  • The Zone of Avoidance, or the part of the sky occupied by the Milky Way, blocks out light from several structures, making their limits imprecisely identified.
  • Some structures are too distant to be seen even with the most powerful telescopes.
  • Some structures have no defined limits, or endpoints. All structures are believed to be part of the cosmic web, which is a conclusive idea.[clarification needed] Most structures are overlapped by nearby galaxies, creating a problem of how to carefully define the structure's limit.
  • Interpreting the observational data requires assumptions about gravitational lensing, redshift, etc.

List of largest structures

List of the largest cosmic structures
Structure name
(year discovered)
Maximum dimension
(in light-years)
Notes
Hercules–Corona Borealis Great Wall (2014)[1] 9,700,000,000–10,000,000,000[2][3][4] Discovered through gamma-ray burst mapping. Existence as a structure is disputed.[5][6][7]
Giant GRB Ring (2015)[8] 5,600,000,000[8] Discovered through gamma-ray burst mapping. Largest-known regular formation in the observable universe.[8]
Huge-LQG (2012–2013) 4,000,000,000[9][10][11] Decoupling of 73 quasars. Largest-known large quasar group and the first structure found to exceed 3 billion light-years.
"The Giant Arc" (2021) 3,300,000,000[12] Located 9.2 billion light years away.
U1.11 LQG (2011) 2,500,000,000 Involves 38 quasars. Adjacent to the Clowes-Campusano LQG.
Clowes–Campusano LQG (1991) 2,000,000,000 Grouping of 34 quasars. Discovered by Roger Clowes and Luis Campusano.
Sloan Great Wall (2003) 1,380,000,000 Discovered through the 2dF Galaxy Redshift Survey and the Sloan Digital Sky Survey.
King Ghidorah Supercluster (2022) 1,300,000,000[13] Consists of at least 15 clusters plus other interconnected filaments. It is the most massive galaxy supercluster discovered so far.[13]
Big Ring (2024) 1,300,000,000 Made up of galaxy clusters.
(Theoretical limit) 1,200,000,000 Structures larger than this size are incompatible with the cosmological principle according to all estimates. However, whether the existence of these structures itself constitutes a refutation of the cosmological principle is still unclear.[14]
Ho'oleilana Bubble (2023) 1,000,000,000 Contains about 56,000 galaxies, located 820 million light years away.
BOSS Great Wall (BGW) (2016) 1,000,000,000 Structure consisting of 4 superclusters of galaxies. The mass and volume exceeds the amount of the Sloan Great Wall.[15]
Perseus–Pegasus Filament (1985) 1,000,000,000 This galaxy filament contains the Perseus–Pisces Supercluster.
Pisces–Cetus Supercluster Complex (1987) 1,000,000,000 Contains the Milky Way, and is the first galaxy filament to be discovered. (The first LQG was found earlier in 1982.) A new report in 2014 confirms the Milky Way as a member of the Laniakea Supercluster.
CfA2 Great Wall (1989) 750,000,000 Also known as the Coma Wall.
Saraswati Supercluster 652,000,000[16] The Saraswati Supercluster consists of 43 massive galaxy clusters, which include Abell 2361 and ZWCl 2341.1+0000.
Boötes Supercluster 620,000,000
Horologium-Reticulum Supercluster (2005) 550,000,000 Also known as the Horologium Supercluster.
Laniakea Supercluster (2014) 520,000,000 Galaxy supercluster in which Earth is located.
Komberg–Kravtsov–Lukash LQG 11 500,000,000 Discovered by Boris V. Komberg, Andrey V. Kravstov and Vladimir N. Lukash.[17][18]
Hyperion proto-supercluster (2018) 489,000,000 The largest and earliest known proto– supercluster.
Komberg–Kravtsov–Lukash LQG 12 480,000,000 Discovered by Boris V. Komberg, Andrey V. Kravstov and Vladimir N. Lukash.[17][18]
Newman LQG (U1.54) 450,000,000
Komberg–Kravtsov–Lukash LQG 5 430,000,000 Discovered by Boris V. Komberg, Andrey V. Kravstov and Vladimir N. Lukash.[17][18]
Tesch–Engels LQG 420,000,000
Shapley Supercluster 400,000,000 First identified by Harlow Shapley as a cloud of galaxies in 1930, it was not identified as a structure until 1989.
Komberg–Kravstov–Lukash LQG 3 390,000,000 Discovered by Boris V. Komberg, Andrey V. Kravstov and Vladimir N. Lukash.[17][18]
U1.90 380,000,000
Lynx–Ursa Major Filament (LUM Filament) 370,000,000
Sculptor Wall 370,000,000 Also known as the Southern Great Wall.
Einasto Supercluster 360,000,000 [19]
Pisces-Cetus Supercluster 350,000,000
Komberg–Kravtsov–Lukash LQG 2 350,000,000 Discovered by Boris V. Komberg, Andrey V. Kravstov and Vladimir N. Lukash.[17][18]
z=2.38 filament around protocluster ClG J2143-4423 330,000,000
Webster LQG 320,000,000 First LQG (Large Quasar Group) discovered.[18][20]
Komberg–Kravtsov–Lukash LQG 8 310,000,000 Discovered by Boris V. Komberg, Andrey V. Kravstov and Vladimir N. Lukash.[17][18]
Komberg–Kravtsov–Lukash LQG 1 280,000,000 Discovered by Boris V. Komberg, Andrey V. Kravstov and Vladimir N. Lukash.[17][18]
Komberg–Kravtsov–Lukash LQG 6 260,000,000 Discovered by Boris V. Komberg, Andrey V. Kravstov and Vladimir N. Lukash.[17][18]
Komberg–Kravtsov–Lukash LQG 7 250,000,000 Discovered by Boris V. Komberg, Andrey V. Kravstov and Vladimir N. Lukash.[17][18]
SCL @ 1338+27 228,314,341 One of the most distant known superclusters.
Komberg–Kravtsov–Lukash LQG 9 200,000,000 Discovered by Boris V. Komberg, Andrey V. Kravstov and Vladimir N. Lukash.[17][18]
SSA22 Protocluster 200,000,000 Giant collection of Lyman-alpha blobs.
Ursa Major Supercluster 200,000,000
Komberg-Kravtsov-Lukash LQG 10 180,000,000 Discovered by Boris V. Komberg, Andrey V. Kravstov and Vladimir N. Lukash.[17][18]
Virgo Supercluster 110,000,000 A part of the Laniakea Supercluster (see above). It also contains the Milky Way Galaxy, which contains the Solar System where Earth orbits the Sun.
Listed here for reference.

List of largest voids

Voids are immense spaces between galaxy filaments and other large-scale structures. Technically they are not structures. They are vast spaces which contain very few or no galaxies. They are theorized to be caused by quantum fluctuations during the early formation of the universe.

A list of the largest voids so far discovered is below. Each is ranked according to its longest dimension.

List of the largest voids
Void name/designation Maximum dimension
(in light-years)
Notes
LOWZ North 13788 void 2,953,000,000 One of largest known voids, containing 109,066 known galaxies.[21]
KBC Void 2,000,000,000 Proposed void containing the Milky Way galaxy and Local Group as an explanation for the discrepancy in the Hubble constant. Existence is still disputed.[22][23]
LOWZ North 4739 void 1,846,000,000 [21]
LOWZ North 16634 void 1,671,000,000 [21]
LOWZ North 11627 void 1,663,000,000 [21]
LOWZ South 4653 void 1,610,000,000 [21]
LOWZ North 13222 void 1,515,000,000 [21]
Giant Void 1,300,000,000 Also known as Canes Venatici Supervoid
LOWZ North 14348 void 1,277,000,000 [21]
LOWZ South 5589 void 1,110,000,000 [21]
LOWZ North 13721 void 1,095,000,000 [21]
LOWZ North 11918 void 998,000,000 [21]
LOWZ North 5692 void 984,000,000 [21]
Bahcall & Soneiro 1982 void 978,000,000 This suspected void ranged 100 degrees across the sky, and has shown up on other surveys as several separate voids.[24]
LOWZ North 11446 void 944,000,000 [21]
LOWZ North 15734 void 938,000,000 [21]
LOWZ North 16394 void 934,000,000 [21]
LOWZ North 8541 void 917,000,000 [21]
LOWZ South 4775 void 899,000,000 [21]
LOWZ North 12092 void 891,000,000 [21]
LOWZ North 3294 void 887,000,000 [21]
Tully-11 void 880,000,000 Catalogued by R. Brent Tully
CMASS South 7225 void 865,000,000 [21]
LOWZ North 14775 void 848,000,000 [21]
LOWZ South 6334 void 846,000,000 [21]
LOWZ North 10254 void 843,000,000 [21]
LOWZ North 13568 void 841,000,000 [21]
LOWZ North 11954 void 827,000,000 [21]
LOWZ North 3404 void 812,000,000 [21]
LOWZ South 3713 void 805,000,000 [21]
LOWZ South 4325 void 804,000,000 [21]
CMASS South 5582 void 796,000,000 [21]
Tully-10 void 792,000,000 Catalogued by R. Brent Tully
LOWZ North 6177 void 789,000,000 [21]
Tully-9 void 746,000,000 Catalogued by R. Brent Tully
B&B Abell-20 void 684,000,000
B&B Abell-9 void 652,000,000
Tully-7 void 567,240,000 Catalogued by R. Brent Tully
Tully-4 void 564,000,000 Catalogued by R. Brent Tully
Tully-6 void 557,460,000 Catalogued by R. Brent Tully
Tully-8 void 554,200,000 Catalogued by R. Brent Tully
B&B Abell-21 void 521,600,000
B&B Abell-28 void 521,600,000
Eridanus Supervoid 489,000,000
(most likely value)
A recent analysis of the Wilkinson Microwave Anisotropy Probe (WMAP) in 2007 has found an irregularity of the temperature fluctuation of the cosmic microwave background within the vicinity of the constellation Eridanus with analysis found to be 70 microkelvins cooler than the average CMB temperature. One speculation is that a void could cause the cold spot, with the possible size on the left. However, it may be as large as 1 billion light-years, close to the size of the Giant Void.
B&B Abell-4 void 489,000,000
B&B Abell-15 void 489,000,000
Tully-3 void 489,000,000 Catalogued by R. Brent Tully
1994EEDTAWSS-10 void 469,440,000
Tully-1 void 456,400,000 Catalogued by R. Brent Tully
B&B Abell-8 void 456,000,000
B&B Abell-22 void 456,000,000
Tully-2 void 443,360,000 Catalogued by R. Brent Tully
B&B Abell-24 void 423,800,000
B&B Abell-27 void 423,800,000
CMASS North 4407 void 414,000,000 [21]
B&B Abell-7 void 391,200,000
B&B Abell-12 void 391,200,000
B&B Abell-29 void 391,200,000
1994EEDTAWSS-21 void 378,160,000
Southern Local Supervoid 365,120,000
B&B Abell-10 void 358,600,000
B&B Abell-11 void 358,600,000
B&B Abell-13 void 358,600,000
B&B Abell-17 void 358,600,000
B&B Abell-19 void 358,600,000
B&B Abell-23 void 358,600,000
CMASS North 11496 void 342,000,000 [21]
1994EEDTAWSS-19 void 342,100,000
Northern Local Supervoid 339,000,000 Virgo Supercluster, Coma Supercluster, Perseus–Pisces Supercluster, Ursa Major-Lynx Supercluster, Hydra–Centaurus Supercluster, Sculptor Supercluster, Pavo–Corona Australes Supercluster form a sheet between the Northern Local Supervoid and the Southern Local Supervoid. The Hercules Supercluster separates the Northern Local Void from the Boötes Void. The Perseus-Pisces Supercluster and Pegasus Supercluster form a sheet separate the Northern Local Void and Southern Local Void from the Pegasus Void.[25]
Boötes Void 330,000,000 Also known as The Giant Nothing
1994EEDTAWSS-12 void 328,000,000
CMASS North 15935 void 252,000,000 [21]
SSRS1 4 void 217,000,000
GACIRASS V0 void 215,000,000
CMASS North 60 void 210,000,000 [21]
SSRS2 3 void 198,000,000
Local Void 195,000,000 The nearest void to the Milky Way.
SSRS2 1 void 177,000,000
IRAS 1 void 166,000,000
Sculptor void 163,000,000
IRAS 3 void 145,000,000
IRAS 2 void 142,000,000
IRAS 7 void 141,000,000
SSRS2 11 void 139,000,000
IRAS 6 void 135,000,000
IRAS 13 void 131,000,000
Pegasus Void 130,000,000 [26] The Perseus–Pisces Supercluster and Pegasus Supercluster form a sheet separate the Northern Local Void and Southern Local Void from the Pegasus Void.[25]
IRAS 8 void 128,000,000
SSRS2 9 void 127,000,000
IRAS 9 void 117,000,000
IRAS 5 void 117,000,000
SSRS2 4 void 116,000,000
SSRS2 10 void 113,000,000
SSRS1 1 void 108,000,000 Located just behind the galaxy concentration Eridanus-Fornax-Dorado.
IRAS 11 void 104,000,000
SSRS2 6 void 104,000,000
CMASS North 10020 void 104,000,000 [21]
IRAS 12 void 102,000,000
Perseus-Pisces void 99,000,000
SSRS1 2 void 97,000,000
IRAS 14 void 93,000,000
SSRS2 8 void 90,000,000
SSRS2 15 void 89,000,000
GACIRASS V1 void 83,000,000
SSRS2 7 void 83,000,000
SSRS2 12 void 81,000,000
GACIRASS V3 void 81,000,000
SSRS2 14 void 69,000,000
SSRS2 18 void 68,000,000
SSRS2 16 void 66,000,000
GACIRASS V2 void 63,000,000
SSRS2 17 void 61,000,000

See also

References

  1. Horvath, Istvan; Bagoly, Zsolt; Hakkila, Jon; Tóth, L. Viktor (2014). "Anomalies in the GRB spatial distribution". Proceedings of Science: 78. doi:10.22323/1.233.0078. Bibcode2014styd.confE..78H. 
  2. Horvath, Istvan; Hakkila, Jon; Bagoly, Zsolt (2014). "Possible structure in the GRB sky distribution at redshift two". Astronomy & Astrophysics 561: id.L12. doi:10.1051/0004-6361/201323020. Bibcode2014A&A...561L..12H. 
  3. Horvath, I.; Hakkila, J.; Bagoly, Z. (2013). "The largest possible structure of the Universe, defined by Einstein in his Big Bang theory (1901).". 7th Huntsville Gamma-Ray Burst Symposium, GRB 2013: Paper 33 in EConf Proceedings C1304143 1311: 1104. Bibcode2013arXiv1311.1104H. 
  4. Klotz, Irene (2013-11-19). "Universe's Largest Structure is a Cosmic Conundrum". discovery. http://news.discovery.com/space/galaxies/universes-largest-structure-is-a-cosmic-conundrum-131119.htm. 
  5. Christian, Sam (2020-07-11). "Re-examining the evidence of the Hercules–Corona Borealis Great Wall" (in en). Monthly Notices of the Royal Astronomical Society 495 (4): 4291–4296. doi:10.1093/mnras/staa1448. ISSN 0035-8711. https://academic.oup.com/mnras/article/495/4/4291/5843300. 
  6. Ukwatta, T. N.; Woźniak, P. R. (2016-01-01). "Investigation of redshift- and duration-dependent clustering of gamma-ray bursts" (in en). Monthly Notices of the Royal Astronomical Society 455 (1): 703–711. doi:10.1093/mnras/stv2350. ISSN 0035-8711. https://academic.oup.com/mnras/article/455/1/703/986230. 
  7. Horvath, I.; Szecsi, D.; Hakkila, J.; Szabo, A.; Racz, I.I.; Toth, L.V.; Pinter, S.; Bagoly, Z. (2020-08-22). "The clustering of gamma-ray bursts in the Hercules-Corona Borealis Great Wall: the largest structure in the Universe?" (in en). Monthly Notices of the Royal Astronomical Society 498 (2): 2544–2553. doi:10.1093/mnras/staa2460. ISSN 0035-8711. https://academic.oup.com/mnras/article/498/2/2544/5895980. 
  8. 8.0 8.1 8.2 Balazs, L.G.; Bagoly, Z.; Hakkila, J.E.; Horvath, I.; Kobori, J.; Racz, I.I.; Toth, L.V. (2015-08-05). "A giant ring-like structure at 0.78 < z < 0.86 displayed by GRBs". Monthly Notices of the Royal Astronomical Society 452 (3): 2236–2246. doi:10.1093/mnras/stv1421. Bibcode2015MNRAS.452.2236B. 
  9. Aron, Jacob (2013). "Largest structure challenges Einstein's smooth cosmos". New Scientist 217 (2900): 13. doi:10.1016/S0262-4079(13)60143-8. Bibcode2013NewSc.217...13A. https://www.newscientist.com/article/dn23074-largest-structure-challenges-einsteins-smooth-cosmos.html. Retrieved 14 January 2013. 
  10. "Astronomers discover the largest structure in the universe". Royal astronomical society. http://www.ras.org.uk/news-and-press/224-news-2013/2212-astronomers-discover-the-largest-structure-in-the-universe. 
  11. Clowes, Roger; Harris, Kathryn A.; Raghunathan, Srinivasan; Campusano, Luis E.; Söchting, Ilona K.; Graham, Matthew J. (2013-01-11). "A structure in the early Universe at z ~ 1.3 that exceeds the homogeneity scale of the R-W concordance cosmology". Monthly Notices of the Royal Astronomical Society 1211 (4): 6256. doi:10.1093/mnras/sts497. Bibcode2013MNRAS.429.2910C. 
  12. "Giant arc stretching-1.3 billion light-years across the cosmos shouldn't exist". https://koliasa.com/giant-arc-stretching-1-3-billion-light-years-across-the-cosmos-shouldnt-exist/. 
  13. 13.0 13.1 Shimawaka, Rhythm; Okabe, Nobuhiro; Shirasaki, Masat; Tanaka, Masayuki (22 November 2022). "King Ghidorah Supercluster: Mapping the light and dark matter in a new supercluster at z = 0.55 using the subaru hyper suprime-cam". Monthly Notices of the Royal Astronomical Society: Letters 519 (1): L45–L50. doi:10.1093/mnrasl/slac150. ISSN 1745-3933. Bibcode2023MNRAS.519L..45S. https://academic.oup.com/mnrasl/article-abstract/519/1/L45/6847752?redirectedFrom=fulltext. 
  14. Nadathur, Seshadri (10 July 2018). "Seeing patterns in noise: Gigaparsec-scale 'structures' that do not violate homogeneity". Monthly Notices of the Royal Astronomical Society 434: 398–406. doi:10.1093/mnras/stt1028. 
  15. H.Lietzen; E.Tempel; L. J.Liivamägi (20 March 2016). "Discovery of a massive supercluster system at z ~ 0.47". Astronomy & Astrophysics 588: L4. doi:10.1051/0004-6361/201628261. Bibcode2016A&A...588L...4L. 
  16. "News | IUCAA". http://www.iucaa.in/Saraswati-General.html. 
  17. 17.00 17.01 17.02 17.03 17.04 17.05 17.06 17.07 17.08 17.09 17.10 Komberg, Boris V.; Kravtsov, Andrey V.; Lukash, Vladimir N. (1996). "The search and investigation of the Large Groups of Quasars". Monthly Notices of the Royal Astronomical Society 282 (3): 2090. doi:10.1093/mnras/282.3.713. Bibcode1996MNRAS.282..713K. https://archive.org/details/arxiv-astro-ph9602090. 
  18. 18.00 18.01 18.02 18.03 18.04 18.05 18.06 18.07 18.08 18.09 18.10 18.11 R.G.Clowes; "Large Quasar Groups - A Short Review"; 'The New Era of Wide Field Astronomy', ASP Conference Series, Vol. 232.; 2001; Astronomical Society of the Pacific; ISBN:1-58381-065-X ; Bibcode2001ASPC..232..108C
  19. Sankhyayan, Shishir; Okabe, Joydeep; Tempel, Elmo; More, Surhud; Einasto, Maret; Dabhade, Pratik; Raychaudhury, Somak; Athreya, Ramana et al. (13 November 2023). "Identification of Superclusters and Their Properties in the Sloan Digital Sky Survey Using the WHL Cluster Catalog". The Astrophysical Journal 958 (1): 62. doi:10.3847/1538-4357/acfaeb. Bibcode2023ApJ...958...62S. 
  20. Webster, Adrian (May 1982). "The clustering of quasars from an objective-prism survey". Monthly Notices of the Royal Astronomical Society 199 (3): 683–705. doi:10.1093/mnras/199.3.683. Bibcode1982MNRAS.199..683W. 
  21. 21.00 21.01 21.02 21.03 21.04 21.05 21.06 21.07 21.08 21.09 21.10 21.11 21.12 21.13 21.14 21.15 21.16 21.17 21.18 21.19 21.20 21.21 21.22 21.23 21.24 21.25 21.26 21.27 21.28 21.29 21.30 21.31 21.32 21.33 Mao, Qingqing; Berlind, Andreas A.; Scherrer, Robert J.; Neyrinck, Mark C.; Scoccimarro, Román; Tinker, Jeremy L.; McBride, Cameron K.; Schneider, Donald P. et al. (2017). "A Cosmic Void Catalog of SDSS DR12 BOSS Galaxies". The Astrophysical Journal 835 (2): 161. doi:10.3847/1538-4357/835/2/161. Bibcode2017ApJ...835..161M. 
  22. Kenworthy, W. D'Arcy; Scolnic, Dan; Riess, Adam (2019-04-24). "The Local Perspective on the Hubble Tension: Local Structure Does Not Impact Measurement of the Hubble Constant". The Astrophysical Journal 875 (2): 145. doi:10.3847/1538-4357/ab0ebf. ISSN 1538-4357. Bibcode2019ApJ...875..145K. 
  23. Haslbauer, Moritz; Banik, Indranil; Kroupa, Pavel (October 23, 2020). "The KBC void and Hubble tension contradict $\Lambda$CDM on a Gpc scale $-$ Milgromian dynamics as a possible solution". Monthly Notices of the Royal Astronomical Society 499 (2): 2845–2883. doi:10.1093/mnras/staa2348. Bibcode2020MNRAS.499.2845H. 
  24. Bahcall, N. A.; Soneira, R. M. (1982) "An approximately 300 MPC void of rich clusters of galaxies" (PDF) Astrophysical Journal, Part 1, vol. 262, Nov. 15, 1982, p. 419-423. Bibcode1982ApJ...262..419B doi:10.1086/160436
  25. 25.0 25.1 Einasto, Jaan; Einasto, Maret; Gramann, Mirt (1989) "Structure and formation of superclusters. IX - Self-similarity of voids" (PDF) Royal Astronomical Society, Monthly Notices (ISSN 0035-8711), vol. 238, May 1, 1989, p. 155-177. Bibcode1989MNRAS.238..155E
  26. S.A. Pustilnik (SAO), D. Engels (Hamburg), A.Y. Kniazev (ESO, SAO), A.G. Pramskij, A.V. Ugryumov (SAO), H.-J. Hagen (Hamburg) (2005) [ "HS 2134+0400 - new very metal-poor galaxy, a representative of void population?"] arXiv:astro-ph/0508255v1 Bibcode2006AstL...32..228P doi:10.1134/S1063773706040025