Buchholz hydra

From HandWiki
Revision as of 14:18, 6 February 2024 by John Stpola (talk | contribs) (fix)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Short description: Hydra game in mathematical logic


In mathematics, especially mathematical logic, graph theory and number theory, the Buchholz hydra game is a type of hydra game, which is a single-player game based on the idea of chopping pieces off of a mathematical tree. The hydra game can be used to generate a rapidly growing function, [math]\displaystyle{ BH(n) }[/math], which eventually dominates all recursive functions that are provably total in "[math]\displaystyle{ \textrm{ID}_{\nu} }[/math]", and the termination of all hydra games is not provably total in [math]\displaystyle{ \textrm{(}\Pi_1^1\textrm{-CA)+BI} }[/math].[1]

Rules

The game is played on a hydra, a finite, rooted connected tree [math]\displaystyle{ A }[/math], with the following properties:

  • The root of [math]\displaystyle{ A }[/math] has a special label, usually denoted [math]\displaystyle{ + }[/math].
  • Any other node of [math]\displaystyle{ A }[/math] has a label [math]\displaystyle{ \nu \leq \omega }[/math].
  • All nodes directly above the root of [math]\displaystyle{ A }[/math] have a label [math]\displaystyle{ 0 }[/math].

If the player decides to remove the top node [math]\displaystyle{ \sigma }[/math] of [math]\displaystyle{ A }[/math], the hydra will then choose an arbitrary [math]\displaystyle{ n \in \N }[/math], where [math]\displaystyle{ n }[/math] is a current turn number, and then transform itself into a new hydra [math]\displaystyle{ A(\sigma, n) }[/math] as follows. Let [math]\displaystyle{ \tau }[/math] represent the parent of [math]\displaystyle{ \sigma }[/math], and let [math]\displaystyle{ A^- }[/math] represent the part of the hydra which remains after [math]\displaystyle{ \sigma }[/math] has been removed. The definition of [math]\displaystyle{ A(\sigma, n) }[/math] depends on the label of [math]\displaystyle{ \sigma }[/math]:

  • If the label of [math]\displaystyle{ \sigma }[/math] is 0 and [math]\displaystyle{ \tau }[/math] is the root of [math]\displaystyle{ A }[/math], then [math]\displaystyle{ A(\sigma, n) }[/math] = [math]\displaystyle{ A^- }[/math].
  • If the label of [math]\displaystyle{ \sigma }[/math] is 0 but [math]\displaystyle{ \tau }[/math] is not the root of [math]\displaystyle{ A }[/math], [math]\displaystyle{ n }[/math] copies of [math]\displaystyle{ \tau }[/math] and all its children are made, and edges between them and [math]\displaystyle{ \tau }[/math]'s parent are added. This new tree is [math]\displaystyle{ A(\sigma, n) }[/math].
  • If the label of [math]\displaystyle{ \sigma }[/math] is [math]\displaystyle{ u }[/math] for some [math]\displaystyle{ u \in \N }[/math], then the first node below [math]\displaystyle{ \sigma }[/math] is labelled [math]\displaystyle{ v \lt u }[/math] as [math]\displaystyle{ \varepsilon }[/math]. [math]\displaystyle{ B }[/math] is then the subtree obtained by starting with [math]\displaystyle{ A_\varepsilon }[/math] and replacing the label of [math]\displaystyle{ \varepsilon }[/math] with [math]\displaystyle{ u - 1 }[/math] and [math]\displaystyle{ \sigma }[/math] with 0. [math]\displaystyle{ A(\sigma, n) }[/math] is then obtained by taking [math]\displaystyle{ A }[/math] and replacing [math]\displaystyle{ \sigma }[/math] with [math]\displaystyle{ B }[/math]. In this case, the value of [math]\displaystyle{ n }[/math] does not matter.
  • If the label of [math]\displaystyle{ \sigma }[/math] is [math]\displaystyle{ \omega }[/math], [math]\displaystyle{ A(\sigma, n) }[/math] is obtained by replacing the label of [math]\displaystyle{ \sigma }[/math] with [math]\displaystyle{ n + 1 }[/math].

If [math]\displaystyle{ \sigma }[/math] is the rightmost head of [math]\displaystyle{ A }[/math], [math]\displaystyle{ A(n) }[/math] is written. A series of moves is called a strategy. A strategy is called a winning strategy if, after a finite amount of moves, the hydra reduces to its root. It has been proven that this always terminates[citation needed], even though the hydra can get taller by massive amounts.

Hydra theorem

Buchholz's paper in 1987[2] showed that the canonical correspondence between a hydra and an infinitary well-founded tree (or the corresponding term in the notation system [math]\displaystyle{ T }[/math] associated to Buchholz's function, which does not necessarily belong to the ordinal notation system [math]\displaystyle{ OT \subset T }[/math]), preserves fundamental sequences of choosing the rightmost leaves and the [math]\displaystyle{ (n) }[/math] operation on an infinitary well-founded tree or the [math]\displaystyle{ [n] }[/math] operation on the corresponding term in [math]\displaystyle{ T }[/math].

The hydra theorem for Buchholz hydra, stating that there are no losing strategies for any hydra, is unprovable in [math]\displaystyle{ \mathsf{\Pi^1_1 - CA + BI} }[/math].[3]

BH(n)

Suppose a tree consists of just one branch with [math]\displaystyle{ x }[/math] nodes, labelled [math]\displaystyle{ +, 0, \omega, ..., \omega }[/math]. Call such a tree [math]\displaystyle{ R^n }[/math]. It cannot[citation needed] be proven in [math]\displaystyle{ \mathsf{\Pi^1_1 - CA + BI} }[/math] that for all [math]\displaystyle{ x }[/math], there exists [math]\displaystyle{ k }[/math] such that [math]\displaystyle{ R_x(1)(2)(3)...(k) }[/math] is a winning strategy. (The latter expression means taking the tree [math]\displaystyle{ R_x }[/math], then transforming it with [math]\displaystyle{ n=1 }[/math], then [math]\displaystyle{ n=2 }[/math], then [math]\displaystyle{ n=3 }[/math], etc. up to [math]\displaystyle{ n=k }[/math].)

Define [math]\displaystyle{ BH(x) }[/math] as the smallest [math]\displaystyle{ k }[/math] such that [math]\displaystyle{ R_x(1)(2)(3)...(k) }[/math] as defined above is a winning strategy. By the hydra theorem, this function is well-defined, but its totality cannot be proven in [math]\displaystyle{ \mathsf{\Pi^1_1 - CA + BI} }[/math]. Hydras grow extremely fast, because the amount of turns required to kill [math]\displaystyle{ R_x(1)(2) }[/math] is larger than Graham's number or even the amount of turns to kill a Kirby-Paris hydra; and [math]\displaystyle{ R_x(1)(2)(3)(4)(5)(6) }[/math] has an entire Kirby-Paris hydra as its branch. To be precise, its rate of growth is believed to be comparable to [math]\displaystyle{ f_{\psi_0(\varepsilon_{\Omega_\omega + 1})}(x) }[/math] with respect to the unspecified system of fundamental sequences without a proof. Here, [math]\displaystyle{ \psi_0 }[/math] denotes Buchholz's function, and [math]\displaystyle{ \psi_0(\varepsilon_{\Omega_\omega + 1}) }[/math] is the Takeuti-Feferman-Buchholz ordinal which measures the strength of [math]\displaystyle{ \mathsf{\Pi^1_1 - CA + BI} }[/math].

The first two values of the BH function are virtually degenerate: [math]\displaystyle{ BH(1) = 0 }[/math] and [math]\displaystyle{ BH(2) = 1 }[/math]. Similarly to the weak tree function, [math]\displaystyle{ BH(3) }[/math] is very large, but less so.[citation needed]

The Buchholz hydra eventually surpasses TREE(n) and SCG(n),[citation needed] yet it is likely weaker than loader as well as numbers from finite promise games.

Analysis

It is possible to make a one-to-one correspondence between some hydras and ordinals[citation needed]. To convert a tree or subtree to an ordinal:

  • Inductively convert all the immediate children of the node to ordinals.
  • Add up those child ordinals. If there were no children, this will be 0.
  • If the label of the node is not +, apply [math]\displaystyle{ \psi_\alpha }[/math], where [math]\displaystyle{ \alpha }[/math] is the label of the node, and [math]\displaystyle{ \psi }[/math] is Buchholz's function.

The resulting ordinal expression is only useful if it is in normal form. Some examples are:

Conversion
Hydra Ordinal
[math]\displaystyle{ + }[/math] [math]\displaystyle{ 0 }[/math]
[math]\displaystyle{ +(0) }[/math] [math]\displaystyle{ \psi_0(0) = 1 }[/math]
[math]\displaystyle{ +(0)(0) }[/math] [math]\displaystyle{ 2 }[/math]
[math]\displaystyle{ +(0(0)) }[/math] [math]\displaystyle{ \psi_0(1) = \omega }[/math]
[math]\displaystyle{ +(0(0))(0) }[/math] [math]\displaystyle{ \omega + 1 }[/math]
[math]\displaystyle{ +(0(0))(0(0)) }[/math] [math]\displaystyle{ \omega \cdot 2 }[/math]
[math]\displaystyle{ +(0(0)(0)) }[/math] [math]\displaystyle{ \omega^2 }[/math]
[math]\displaystyle{ +(0(0(0))) }[/math] [math]\displaystyle{ \omega^\omega }[/math]
[math]\displaystyle{ +(0(1)) }[/math] [math]\displaystyle{ \varepsilon_0 }[/math]
[math]\displaystyle{ +(0(1)(1)) }[/math] [math]\displaystyle{ \varepsilon_1 }[/math]
[math]\displaystyle{ +(0(1(0))) }[/math] [math]\displaystyle{ \varepsilon_\omega }[/math]
[math]\displaystyle{ +(0(1(1))) }[/math] [math]\displaystyle{ \zeta_0 }[/math]
[math]\displaystyle{ +(0(1(1(1)))) }[/math] [math]\displaystyle{ \Gamma_0 }[/math]
[math]\displaystyle{ +(0(1(1(1(0))))) }[/math] SVO
[math]\displaystyle{ +(0(1(1(1(1))))) }[/math] LVO
[math]\displaystyle{ +(0(2)) }[/math] BHO
[math]\displaystyle{ +(0(\omega)) }[/math] BO

References

  1. W. Buchholz, "An independence result for (Π11-CA)+BI " (1987), Annals of Pure and Applied Logic vol. 33, pp.131--155
  2. Buchholz, Wilfried (1987). "An independence result for (Π11-CA)+BI" (in en). Annals of Pure and Applied Logic 33: 131–155. doi:10.1016/0168-0072(87)90078-9. 
  3. Hamano, Masahiro; Okada, Mitsuhiro (1998-03-01). "A direct independence proof of Buchholz's Hydra Game on finite labelled trees". Archive for Mathematical Logic 37 (2): 67–89. doi:10.1007/s001530050084. ISSN 0933-5846. http://link.springer.com/10.1007/s001530050084. Retrieved 2022-05-22.