Detrended fluctuation analysis
In stochastic processes, chaos theory and time series analysis, detrended fluctuation analysis (DFA) is a method for determining the statistical self-affinity of a signal. It is useful for analysing time series that appear to be long-memory processes (diverging correlation time, e.g. power-law decaying autocorrelation function) or 1/f noise. The obtained exponent is similar to the Hurst exponent, except that DFA may also be applied to signals whose underlying statistics (such as mean and variance) or dynamics are non-stationary (changing with time). It is related to measures based upon spectral techniques such as autocorrelation and Fourier transform.
Peng et al. introduced DFA in 1994 in a paper that has been cited over 3,000 times as of 2022[1] and represents an extension of the (ordinary) fluctuation analysis (FA), which is affected by non-stationarities.
Definition
Algorithm
Given: a time series [math]\displaystyle{ x_1, x_2, ..., x_N }[/math].
Compute its average value [math]\displaystyle{ \langle x\rangle = \frac 1N \sum_{t=1}^N x_t }[/math].
Sum it into a process [math]\displaystyle{ X_t=\sum_{i=1}^t (x_i-\langle x\rangle) }[/math]. This is the cumulative sum, or profile, of the original time series. For example, the profile of an i.i.d. white noise is a standard random walk.
Select a set [math]\displaystyle{ T = \{n_1, ..., n_k\} }[/math] of integers, such that [math]\displaystyle{ n_1 \lt n_2 \lt \cdots \lt n_k }[/math], the smallest [math]\displaystyle{ n_1 \approx 4 }[/math], the largest [math]\displaystyle{ n_k \approx N }[/math], and the sequence is roughly distributed evenly in log-scale: [math]\displaystyle{ \log(n_2) - \log(n_1) \approx \log(n_3) - \log(n_2) \approx \cdots }[/math]. In other words, it is approximately a geometric progression.[2]
For each [math]\displaystyle{ n \in T }[/math], divide the sequence [math]\displaystyle{ X_t }[/math] into consecutive segments of length [math]\displaystyle{ n }[/math]. Within each segment, compute the least squares straight-line fit (the local trend). Let [math]\displaystyle{ Y_{1,n}, Y_{2,n}, ..., Y_{N,n} }[/math] be the resulting piecewise-linear fit.
Compute the root-mean-square deviation from the local trend (local fluctuation):[math]\displaystyle{ F( n, i) = \sqrt{\frac{1}{n}\sum_{t = in+1}^{in+n} \left( X_t - Y_{t, n} \right)^2}. }[/math]And their root-mean-square is the total fluctuation:
- [math]\displaystyle{ F( n ) = \sqrt{\frac{1}{N/n}\sum_{i = 1}^{N/n} F(n, i)^2}. }[/math]
(If [math]\displaystyle{ N }[/math] is not divisible by [math]\displaystyle{ n }[/math], then one can either discard the remainder of the sequence, or repeat the procedure on the reversed sequence, then take their root-mean-square.[3])
Make the log-log plot [math]\displaystyle{ \log n - \log F(n) }[/math].[4][5]
Interpretation
A straight line of slope [math]\displaystyle{ \alpha }[/math] on the log-log plot indicates a statistical self-affinity of form [math]\displaystyle{ F(n) \propto n^{\alpha} }[/math]. Since [math]\displaystyle{ F(n) }[/math] monotonically increases with [math]\displaystyle{ n }[/math], we always have [math]\displaystyle{ \alpha \gt 0 }[/math].
The scaling exponent [math]\displaystyle{ \alpha }[/math] is a generalization of the Hurst exponent, with the precise value giving information about the series self-correlations:
- [math]\displaystyle{ \alpha\lt 1/2 }[/math]: anti-correlated
- [math]\displaystyle{ \alpha \simeq 1/2 }[/math]: uncorrelated, white noise
- [math]\displaystyle{ \alpha\gt 1/2 }[/math]: correlated
- [math]\displaystyle{ \alpha\simeq 1 }[/math]: 1/f-noise, pink noise
- [math]\displaystyle{ \alpha\gt 1 }[/math]: non-stationary, unbounded
- [math]\displaystyle{ \alpha\simeq 3/2 }[/math]: Brownian noise
Because the expected displacement in an uncorrelated random walk of length N grows like [math]\displaystyle{ \sqrt{N} }[/math], an exponent of [math]\displaystyle{ \tfrac{1}{2} }[/math] would correspond to uncorrelated white noise. When the exponent is between 0 and 1, the result is fractional Gaussian noise.
Pitfalls in interpretation
Though the DFA algorithm always produces a positive number [math]\displaystyle{ \alpha }[/math] for any time series, it does not necessarily imply that the time series is self-similar. Self-similarity requires the log-log graph to be sufficiently linear over a wide range of [math]\displaystyle{ n }[/math]. Furthermore, a combination of techniques including MLE, rather than least-squares has been shown to better approximate the scaling, or power-law, exponent.[6]
Also, there are many scaling exponent-like quantities that can be measured for a self-similar time series, including the divider dimension and Hurst exponent. Therefore, the DFA scaling exponent [math]\displaystyle{ \alpha }[/math] is not a fractal dimension, and does not have certain desirable properties that the Hausdorff dimension has, though in certain special cases it is related to the box-counting dimension for the graph of a time series.
Generalizations
Generalization to polynomial trends (higher order DFA)
The standard DFA algorithm given above removes a linear trend in each segment. If we remove a degree-n polynomial trend in each segment, it is called DFAn, or higher order DFA.[7]
Since [math]\displaystyle{ X_t }[/math] is a cumulative sum of [math]\displaystyle{ x_t-\langle x\rangle }[/math], a linear trend in [math]\displaystyle{ X_t }[/math] is a constant trend in [math]\displaystyle{ x_t-\langle x\rangle }[/math], which is a constant trend in [math]\displaystyle{ x_t }[/math] (visible as short sections of "flat plateaus"). In this regard, DFA1 removes the mean from segments of the time series [math]\displaystyle{ x_t }[/math] before quantifying the fluctuation.
Similarly, a degree n trend in [math]\displaystyle{ X_t }[/math] is a degree (n-1) trend in [math]\displaystyle{ x_t }[/math]. For example, DFA1 removes linear trends from segments of the time series [math]\displaystyle{ x_t }[/math] before quantifying the fluctuation, DFA1 removes parabolic trends from [math]\displaystyle{ x_t }[/math], and so on.
The Hurst R/S analysis removes constant trends in the original sequence and thus, in its detrending it is equivalent to DFA1.
Generalization to different moments (multifractal DFA)
DFA can be generalized by computing[math]\displaystyle{ F_q( n ) = \left(\frac{1}{N/n}\sum_{i = 1}^{N/n} F(n, i)^q\right)^{1/q}. }[/math]then making the log-log plot of [math]\displaystyle{ \log n - \log F_q(n) }[/math], If there is a strong linearity in the plot of [math]\displaystyle{ \log n - \log F_q(n) }[/math], then that slope is [math]\displaystyle{ \alpha(q) }[/math].[8] DFA is the special case where [math]\displaystyle{ q=2 }[/math].
Multifractal systems scale as a function [math]\displaystyle{ F_q(n) \propto n^{\alpha(q)} }[/math]. Essentially, the scaling exponents need not be independent of the scale of the system. In particular, DFA measures the scaling-behavior of the second moment-fluctuations.
Kantelhardt et al. intended this scaling exponent as a generalization of the classical Hurst exponent. The classical Hurst exponent corresponds to [math]\displaystyle{ H=\alpha(2) }[/math] for stationary cases, and [math]\displaystyle{ H=\alpha(2)-1 }[/math] for nonstationary cases.[8][9][10]
Applications
The DFA method has been applied to many systems, e.g. DNA sequences,[11][12] neuronal oscillations,[10] speech pathology detection,[13] heartbeat fluctuation in different sleep stages,[14] and animal behavior pattern analysis.[15]
The effect of trends on DFA has been studied.[16]
Relations to other methods, for specific types of signal
For signals with power-law-decaying autocorrelation
In the case of power-law decaying auto-correlations, the correlation function decays with an exponent [math]\displaystyle{ \gamma }[/math]: [math]\displaystyle{ C(L)\sim L^{-\gamma}\!\ }[/math]. In addition the power spectrum decays as [math]\displaystyle{ P(f)\sim f^{-\beta}\!\ }[/math]. The three exponents are related by:[11]
- [math]\displaystyle{ \gamma=2-2\alpha }[/math]
- [math]\displaystyle{ \beta=2\alpha-1 }[/math] and
- [math]\displaystyle{ \gamma=1-\beta }[/math].
The relations can be derived using the Wiener–Khinchin theorem. The relation of DFA to the power spectrum method has been well studied.[17]
Thus, [math]\displaystyle{ \alpha }[/math] is tied to the slope of the power spectrum [math]\displaystyle{ \beta }[/math] and is used to describe the color of noise by this relationship: [math]\displaystyle{ \alpha = (\beta+1)/2 }[/math].
For fractional Gaussian noise
For fractional Gaussian noise (FGN), we have [math]\displaystyle{ \beta \in [-1,1] }[/math], and thus [math]\displaystyle{ \alpha \in [0,1] }[/math], and [math]\displaystyle{ \beta = 2H-1 }[/math], where [math]\displaystyle{ H }[/math] is the Hurst exponent. [math]\displaystyle{ \alpha }[/math] for FGN is equal to [math]\displaystyle{ H }[/math].[18]
For fractional Brownian motion
For fractional Brownian motion (FBM), we have [math]\displaystyle{ \beta \in [1,3] }[/math], and thus [math]\displaystyle{ \alpha \in [1,2] }[/math], and [math]\displaystyle{ \beta = 2H+1 }[/math], where [math]\displaystyle{ H }[/math] is the Hurst exponent. [math]\displaystyle{ \alpha }[/math] for FBM is equal to [math]\displaystyle{ H+1 }[/math].[9] In this context, FBM is the cumulative sum or the integral of FGN, thus, the exponents of their power spectra differ by 2.
See also
- Multifractal system
- Self-organized criticality
- Self-affinity
- Time series analysis
- Hurst exponent
References
- ↑ Peng, C.K. (1994). "Mosaic organization of DNA nucleotides". Phys. Rev. E 49 (2): 1685–1689. doi:10.1103/physreve.49.1685. PMID 9961383. Bibcode: 1994PhRvE..49.1685P.
- ↑ Hardstone, Richard; Poil, Simon-Shlomo; Schiavone, Giuseppina; Jansen, Rick; Nikulin, Vadim; Mansvelder, Huibert; Linkenkaer-Hansen, Klaus (2012). "Detrended Fluctuation Analysis: A Scale-Free View on Neuronal Oscillations". Frontiers in Physiology 3: 450. doi:10.3389/fphys.2012.00450. ISSN 1664-042X. PMID 23226132.
- ↑ Zhou, Yu; Leung, Yee (2010-06-21). "Multifractal temporally weighted detrended fluctuation analysis and its application in the analysis of scaling behavior in temperature series". Journal of Statistical Mechanics: Theory and Experiment 2010 (6): P06021. doi:10.1088/1742-5468/2010/06/P06021. ISSN 1742-5468. https://iopscience.iop.org/article/10.1088/1742-5468/2010/06/P06021.
- ↑ Peng, C.K. (1994). "Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series". Chaos 49 (1): 82–87. doi:10.1063/1.166141. PMID 11538314. Bibcode: 1995Chaos...5...82P.
- ↑ Bryce, R.M.; Sprague, K.B. (2012). "Revisiting detrended fluctuation analysis". Sci. Rep. 2: 315. doi:10.1038/srep00315. PMID 22419991. Bibcode: 2012NatSR...2E.315B.
- ↑ Clauset, Aaron; Rohilla Shalizi, Cosma; Newman, M. E. J. (2009). "Power-Law Distributions in Empirical Data". SIAM Review 51 (4): 661–703. doi:10.1137/070710111. Bibcode: 2009SIAMR..51..661C.
- ↑ Kantelhardt J.W. (2001). "Detecting long-range correlations with detrended fluctuation analysis". Physica A 295 (3–4): 441–454. doi:10.1016/s0378-4371(01)00144-3. Bibcode: 2001PhyA..295..441K.
- ↑ 8.0 8.1 H.E. Stanley, J.W. Kantelhardt; S.A. Zschiegner; E. Koscielny-Bunde; S. Havlin; A. Bunde (2002). "Multifractal detrended fluctuation analysis of nonstationary time series". Physica A 316 (1–4): 87–114. doi:10.1016/s0378-4371(02)01383-3. Bibcode: 2002PhyA..316...87K. http://havlin.biu.ac.il/Publications.php?keyword=Multifractal+detrended+fluctuation+analysis+of+nonstationary+time+series++&year=*&match=all. Retrieved 2011-07-20.
- ↑ 9.0 9.1 Movahed, M. Sadegh (2006). "Multifractal detrended fluctuation analysis of sunspot time series". Journal of Statistical Mechanics: Theory and Experiment 02.
- ↑ 10.0 10.1 Hardstone, Richard; Poil, Simon-Shlomo; Schiavone, Giuseppina; Jansen, Rick; Nikulin, Vadim V.; Mansvelder, Huibert D.; Linkenkaer-Hansen, Klaus (1 January 2012). "Detrended Fluctuation Analysis: A Scale-Free View on Neuronal Oscillations". Frontiers in Physiology 3: 450. doi:10.3389/fphys.2012.00450. PMID 23226132.
- ↑ 11.0 11.1 Buldyrev (1995). "Long-Range Correlation-Properties of Coding And Noncoding Dna-Sequences- Genbank Analysis". Phys. Rev. E 51 (5): 5084–5091. doi:10.1103/physreve.51.5084. PMID 9963221. Bibcode: 1995PhRvE..51.5084B.
- ↑ Bunde A, Havlin S (1996). Fractals and Disordered Systems, Springer, Berlin, Heidelberg, New York.
- ↑ Little, M.; McSharry, P.; Moroz, I.; Roberts, S. (2006). "Nonlinear, Biophysically-Informed Speech Pathology Detection". 2006 IEEE International Conference on Acoustics Speed and Signal Processing Proceedings. 2. pp. II-1080-II-1083. doi:10.1109/ICASSP.2006.1660534. ISBN 1-4244-0469-X. http://www.robots.ox.ac.uk/~sjrob/Pubs/NonlinearBiophysicalVoiceDisorderDetection.pdf.
- ↑ Bunde A. (2000). "Correlated and uncorrelated regions in heart-rate fluctuations during sleep". Phys. Rev. E 85 (17): 3736–3739. doi:10.1103/physrevlett.85.3736. PMID 11030994. Bibcode: 2000PhRvL..85.3736B.
- ↑ Bogachev, Mikhail I.; Lyanova, Asya I.; Sinitca, Aleksandr M.; Pyko, Svetlana A.; Pyko, Nikita S.; Kuzmenko, Alexander V.; Romanov, Sergey A.; Brikova, Olga I. et al. (March 2023). "Understanding the complex interplay of persistent and antipersistent regimes in animal movement trajectories as a prominent characteristic of their behavioral pattern profiles: Towards an automated and robust model based quantification of anxiety test data" (in en). Biomedical Signal Processing and Control 81: 104409. doi:10.1016/j.bspc.2022.104409. https://linkinghub.elsevier.com/retrieve/pii/S1746809422008631.
- ↑ Hu, K. (2001). "Effect of trends on detrended fluctuation analysis". Phys. Rev. E 64 (1): 011114. doi:10.1103/physreve.64.011114. PMID 11461232. Bibcode: 2001PhRvE..64a1114H.
- ↑ Heneghan (2000). "Establishing the relation between detrended fluctuation analysis and power spectral density analysis for stochastic processes". Phys. Rev. E 62 (5): 6103–6110. doi:10.1103/physreve.62.6103. PMID 11101940. Bibcode: 2000PhRvE..62.6103H.
- ↑ Taqqu, Murad S. (1995). "Estimators for long-range dependence: an empirical study.". Fractals 3 (4): 785–798. doi:10.1142/S0218348X95000692.
External links
- Tutorial on how to calculate detrended fluctuation analysis in Matlab using the Neurophysiological Biomarker Toolbox.
- FastDFA MATLAB code for rapidly calculating the DFA scaling exponent on very large datasets.
- Physionet A good overview of DFA and C code to calculate it.
- MFDFA Python implementation of (Multifractal) Detrended Fluctuation Analysis.
Original source: https://en.wikipedia.org/wiki/Detrended fluctuation analysis.
Read more |