q-derivative

From HandWiki
Revision as of 17:06, 6 February 2024 by Len Stevenson (talk | contribs) (fix)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Short description: Q-analog of the ordinary derivative


In mathematics, in the area of combinatorics and quantum calculus, the q-derivative, or Jackson derivative, is a q-analog of the ordinary derivative, introduced by Frank Hilton Jackson. It is the inverse of Jackson's q-integration. For other forms of q-derivative, see (Chung Chung).

Definition

The q-derivative of a function f(x) is defined as[1][2][3]

[math]\displaystyle{ \left(\frac{d}{dx}\right)_q f(x)=\frac{f(qx)-f(x)}{qx-x}. }[/math]

It is also often written as [math]\displaystyle{ D_qf(x) }[/math]. The q-derivative is also known as the Jackson derivative.

Formally, in terms of Lagrange's shift operator in logarithmic variables, it amounts to the operator

[math]\displaystyle{ D_q= \frac{1}{x} ~ \frac{q^{d~~~ \over d (\ln x)} -1}{q-1} ~, }[/math]

which goes to the plain derivative, [math]\displaystyle{ D_q \to \frac{d}{dx} }[/math] as [math]\displaystyle{ q \to 1 }[/math].

It is manifestly linear,

[math]\displaystyle{ \displaystyle D_q (f(x)+g(x)) = D_q f(x) + D_q g(x)~. }[/math]

It has a product rule analogous to the ordinary derivative product rule, with two equivalent forms

[math]\displaystyle{ \displaystyle D_q (f(x)g(x)) = g(x)D_q f(x) + f(qx)D_q g(x) = g(qx)D_q f(x) + f(x)D_q g(x). }[/math]

Similarly, it satisfies a quotient rule,

[math]\displaystyle{ \displaystyle D_q (f(x)/g(x)) = \frac{g(x)D_q f(x) - f(x)D_q g(x)}{g(qx)g(x)},\quad g(x)g(qx)\neq 0. }[/math]

There is also a rule similar to the chain rule for ordinary derivatives. Let [math]\displaystyle{ g(x) = c x^k }[/math]. Then

[math]\displaystyle{ \displaystyle D_q f(g(x)) = D_{q^k}(f)(g(x))D_q(g)(x). }[/math]

The eigenfunction of the q-derivative is the q-exponential eq(x).

Relationship to ordinary derivatives

Q-differentiation resembles ordinary differentiation, with curious differences. For example, the q-derivative of the monomial is:[2]

[math]\displaystyle{ \left(\frac{d}{dz}\right)_q z^n = \frac{1-q^n}{1-q} z^{n-1} = [n]_q z^{n-1} }[/math]

where [math]\displaystyle{ [n]_q }[/math] is the q-bracket of n. Note that [math]\displaystyle{ \lim_{q\to 1}[n]_q = n }[/math] so the ordinary derivative is regained in this limit.

The n-th q-derivative of a function may be given as:[3]

[math]\displaystyle{ (D^n_q f)(0)= \frac{f^{(n)}(0)}{n!} \frac{(q;q)_n}{(1-q)^n}= \frac{f^{(n)}(0)}{n!} [n]!_q }[/math]

provided that the ordinary n-th derivative of f exists at x = 0. Here, [math]\displaystyle{ (q;q)_n }[/math] is the q-Pochhammer symbol, and [math]\displaystyle{ [n]!_q }[/math] is the q-factorial. If [math]\displaystyle{ f(x) }[/math] is analytic we can apply the Taylor formula to the definition of [math]\displaystyle{ D_q(f(x)) }[/math] to get

[math]\displaystyle{ \displaystyle D_q(f(x)) = \sum_{k=0}^{\infty}\frac{(q-1)^k}{(k+1)!} x^k f^{(k+1)}(x). }[/math]

A q-analog of the Taylor expansion of a function about zero follows:[2]

[math]\displaystyle{ f(z)=\sum_{n=0}^\infty f^{(n)}(0)\,\frac{z^n}{n!} = \sum_{n=0}^\infty (D^n_q f)(0)\,\frac{z^n}{[n]!_q}. }[/math]

Higher order q-derivatives

The following representation for higher order [math]\displaystyle{ q }[/math]-derivatives is known:[4][5]

[math]\displaystyle{ D_q^nf(x)=\frac{1}{(1-q)^nx^n}\sum_{k=0}^n(-1)^k\binom{n}{k}_q q^{\binom{k}{2}-(n-1)k}f(q^kx). }[/math]

[math]\displaystyle{ \binom{n}{k}_q }[/math] is the [math]\displaystyle{ q }[/math]-binomial coefficient. By changing the order of summation as [math]\displaystyle{ r=n-k }[/math], we obtain the next formula:[4][6]

[math]\displaystyle{ D_q^nf(x)=\frac{(-1)^n q^{-\binom{n}{2}}}{(1-q)^nx^n}\sum_{r=0}^n(-1)^r\binom{n}{r}_q q^{\binom{r}{2}}f(q^{n-r}x). }[/math]

Higher order [math]\displaystyle{ q }[/math]-derivatives are used to [math]\displaystyle{ q }[/math]-Taylor formula and the [math]\displaystyle{ q }[/math]-Rodrigues' formula (the formula used to construct [math]\displaystyle{ q }[/math]-orthogonal polynomials[4]).

Generalizations

Post Quantum Calculus

Post quantum calculus is a generalization of the theory of quantum calculus, and it uses the following operator:[7][8]

[math]\displaystyle{ D_{p,q}f(x):=\frac{f(px)-f(qx)}{(p-q)x},\quad x\neq 0. }[/math]

Hahn difference

Wolfgang Hahn introduced the following operator (Hahn difference):[9][10]

[math]\displaystyle{ D_{q,\omega}f(x):=\frac{f(qx+\omega)-f(x)}{(q-1)x+\omega},\quad 0\lt q\lt 1,\quad\omega\gt 0. }[/math]

When [math]\displaystyle{ \omega\to0 }[/math] this operator reduces to [math]\displaystyle{ q }[/math]-derivative, and when [math]\displaystyle{ q\to1 }[/math] it reduces to forward difference. This is a successful tool for constructing families of orthogonal polynomials and investigating some approximation problems.[11][12][13]

β-derivative

[math]\displaystyle{ \beta }[/math]-derivative is an operator defined as follows:[14][15]

[math]\displaystyle{ D_\beta f(t):=\frac{f(\beta(t))-f(t)}{\beta(t)-t},\quad\beta\neq t,\quad\beta:I\to I. }[/math]

In the definition, [math]\displaystyle{ I }[/math] is a given interval, and [math]\displaystyle{ \beta(t) }[/math] is any continuous function that strictly monotonically increases (i.e. [math]\displaystyle{ t\gt s\rightarrow\beta(t)\gt \beta(s) }[/math]). When [math]\displaystyle{ \beta(t)=qt }[/math] then this operator is [math]\displaystyle{ q }[/math]-derivative, and when [math]\displaystyle{ \beta(t)=qt+\omega }[/math] this operator is Hahn difference.

Applications

The q-calculus has been used in machine learning for designing stochastic activation functions.[16]

See also

Citations

  1. Jackson 1908, pp. 253–281.
  2. 2.0 2.1 2.2 Kac & Pokman Cheung 2002.
  3. 3.0 3.1 Ernst 2012.
  4. 4.0 4.1 4.2 Koepf 2014.
  5. Koepf, Rajković & Marinković 2007, pp. 621–638.
  6. Annaby & Mansour 2008, pp. 472–483.
  7. Gupta V., Rassias T.M., Agrawal P.N., Acu A.M. (2018) Basics of Post-Quantum Calculus. In: Recent Advances in Constructive Approximation Theory. SpringerOptimization and Its Applications, vol 138. Springer.
  8. Duran 2016.
  9. Hahn, W. (1949). Math. Nachr. 2: 4-34.
  10. Hahn, W. (1983) Monatshefte Math. 95: 19-24.
  11. Foupouagnigni 1998.
  12. Kwon, K.; Lee, D.; Park, S.; Yoo, B.: Kyungpook Math. J. 38, 259-281 (1998).
  13. Alvarez-Nodarse, R.: J. Comput. Appl. Math. 196, 320-337 (2006).
  14. Auch, T. (2013): Development and Application of Difference and Fractional Calculus on Discrete Time Scales. PhD thesis, University of Nebraska-Lincoln.
  15. Hamza et al. 2015, p. 182.
  16. Nielsen & Sun 2021, pp. 2782–2789.

Bibliography

  • Annaby, M. H.; Mansour, Z. S. (2008). "q-Taylor and interpolation-difference operators". Journal of Mathematical Analysis and Applications 344 (1): 472–483. doi:10.1016/j.jmaa.2008.02.033. 
  • Chung, K. S.; Chung, W. S.; Nam, S. T.; Kang, H. J. (1994). "New q-derivative and q-logarithm". International Journal of Theoretical Physics 33 (10): 2019–2029. doi:10.1007/BF00675167. Bibcode1994IJTP...33.2019C. 
  • Duran, U. (2016). Post Quantum Calculus (M.Sc. thesis). Department of Mathematics, University of Gaziantep Graduate School of Natural & Applied Sciences. Retrieved 9 March 2022 – via ResearchGate.
  • Ernst, T. (2012). A comprehensive treatment of q-calculus. Springer Science & Business Media. ISBN 978-303480430-1. 
  • Ernst, Thomas (2001). "The History of q-Calculus and a new method". http://www.math.uu.se/research/pub/Ernst4.pdf. 
  • Exton, H. (1983). q-Hypergeometric Functions and Applications. New York: Halstead Press. ISBN 978-047027453-8. 
  • Foupouagnigni, M. (1998). Laguerre-Hahn orthogonal polynomials with respect to the Hahn operator: fourth-order difference equation for the rth associated and the Laguerre-Freud equations for the recurrence coefficients (Ph.D. thesis). Université Nationale du Bénin.
  • Hamza, A.; Sarhan, A.; Shehata, E.; Aldwoah, K. (2015). "A General Quantum Difference Calculus". Advances in Difference Equations 1: 182. doi:10.1186/s13662-015-0518-3. 
  • Jackson, F. H. (1908). "On q-functions and a certain difference operator". Trans. R. Soc. Edinb. 46 (2): 253–281. doi:10.1017/S0080456800002751. 
  • Kac, Victor; ((Pokman Cheung)) (2002). Quantum Calculus. Springer-Verlag. ISBN 0-387-95341-8. 
  • Koekoek, J.; Koekoek, R. (1999). "A note on the q-derivative operator". J. Math. Anal. Appl. 176 (2): 627–634. doi:10.1006/jmaa.1993.1237. 
  • Koepf, W.; Rajković, P. M.; Marinković, S. D. (July 2007). "Properties of q-holonomic functions". Journal of Difference Equations and Applications 13 (7): 621–638. doi:10.1080/10236190701264925. 
  • Koepf, Wolfram (2014). Hypergeometric Summation. An Algorithmic Approach to Summation and Special Function Identities. Springer. ISBN 978-1-4471-6464-7. 
  • Nielsen, Frank; Sun, Ke (2021). "q-Neurons: Neuron Activations Based on Stochastic Jackson's Derivative Operators". IEEE Trans. Neural Networks Learn. Syst 32 (6): 2782–2789. doi:10.1109/TNNLS.2020.3005167. PMID 32886614. https://ieeexplore.ieee.org/document/9139267.