Ramanujan's sum
In number theory, Ramanujan's sum, usually denoted cq(n), is a function of two positive integer variables q and n defined by the formula
- [math]\displaystyle{ c_q(n) = \sum_{1 \le a \leq q \atop (a,q)=1} e^{2 \pi i \tfrac{a}{q} n}, }[/math]
where (a, q) = 1 means that a only takes on values coprime to q.
Srinivasa Ramanujan mentioned the sums in a 1918 paper.[1] In addition to the expansions discussed in this article, Ramanujan's sums are used in the proof of Vinogradov's theorem that every sufficiently large odd number is the sum of three primes.[2]
Notation
For integers a and b, [math]\displaystyle{ a\mid b }[/math] is read "a divides b" and means that there is an integer c such that [math]\displaystyle{ \frac b a = c. }[/math] Similarly, [math]\displaystyle{ a\nmid b }[/math] is read "a does not divide b". The summation symbol
- [math]\displaystyle{ \sum_{d\,\mid\,m}f(d) }[/math]
means that d goes through all the positive divisors of m, e.g.
- [math]\displaystyle{ \sum_{d\,\mid\,12}f(d) = f(1) + f(2) + f(3) + f(4) + f(6) + f(12). }[/math]
[math]\displaystyle{ (a,\,b) }[/math] is the greatest common divisor,
[math]\displaystyle{ \phi(n) }[/math] is Euler's totient function,
[math]\displaystyle{ \mu(n) }[/math] is the Möbius function, and
[math]\displaystyle{ \zeta(s) }[/math] is the Riemann zeta function.
Formulas for cq(n)
Trigonometry
These formulas come from the definition, Euler's formula [math]\displaystyle{ e^{ix}= \cos x + i \sin x, }[/math] and elementary trigonometric identities.
- [math]\displaystyle{ \begin{align} c_1(n) &= 1 \\ c_2(n) &= \cos n\pi \\ c_3(n) &= 2\cos \tfrac23 n\pi \\ c_4(n) &= 2\cos \tfrac12 n\pi \\ c_5(n) &= 2\cos \tfrac25 n\pi + 2\cos \tfrac45 n\pi \\ c_6(n) &= 2\cos \tfrac13 n\pi \\ c_7(n) &= 2\cos \tfrac27 n\pi + 2\cos \tfrac47 n\pi + 2\cos \tfrac67 n\pi \\ c_8(n) &= 2\cos \tfrac14 n\pi + 2\cos \tfrac34 n\pi \\ c_9(n) &= 2\cos \tfrac29 n\pi + 2\cos \tfrac49 n\pi + 2\cos \tfrac89 n\pi \\ c_{10}(n)&= 2\cos \tfrac15 n\pi + 2\cos \tfrac35 n\pi \\ \end{align} }[/math]
and so on (OEIS: A000012, OEIS: A033999, OEIS: A099837, OEIS: A176742,.., OEIS: A100051,...). cq(n) is always an integer.
Kluyver
Let [math]\displaystyle{ \zeta_q=e^{\frac{2\pi i}{q}}. }[/math] Then ζq is a root of the equation xq − 1 = 0. Each of its powers,
- [math]\displaystyle{ \zeta_q, \zeta_q^2, \ldots, \zeta_q^{q-1}, \zeta_q^q = \zeta_q^0 =1 }[/math]
is also a root. Therefore, since there are q of them, they are all of the roots. The numbers [math]\displaystyle{ \zeta_q^n }[/math] where 1 ≤ n ≤ q are called the q-th roots of unity. ζq is called a primitive q-th root of unity because the smallest value of n that makes [math]\displaystyle{ \zeta_q^n =1 }[/math] is q. The other primitive q-th roots of unity are the numbers [math]\displaystyle{ \zeta_q^a }[/math] where (a, q) = 1. Therefore, there are φ(q) primitive q-th roots of unity.
Thus, the Ramanujan sum cq(n) is the sum of the n-th powers of the primitive q-th roots of unity.
It is a fact[3] that the powers of ζq are precisely the primitive roots for all the divisors of q.
Example. Let q = 12. Then
- [math]\displaystyle{ \zeta_{12}, \zeta_{12}^5, \zeta_{12}^7, }[/math] and [math]\displaystyle{ \zeta_{12}^{11} }[/math] are the primitive twelfth roots of unity,
- [math]\displaystyle{ \zeta_{12}^2 }[/math] and [math]\displaystyle{ \zeta_{12}^{10} }[/math] are the primitive sixth roots of unity,
- [math]\displaystyle{ \zeta_{12}^3 = i }[/math] and [math]\displaystyle{ \zeta_{12}^9 = -i }[/math] are the primitive fourth roots of unity,
- [math]\displaystyle{ \zeta_{12}^4 }[/math] and [math]\displaystyle{ \zeta_{12}^8 }[/math] are the primitive third roots of unity,
- [math]\displaystyle{ \zeta_{12}^6 = -1 }[/math] is the primitive second root of unity, and
- [math]\displaystyle{ \zeta_{12}^{12} = 1 }[/math] is the primitive first root of unity.
Therefore, if
- [math]\displaystyle{ \eta_q(n) = \sum_{k=1}^q \zeta_q^{kn} }[/math]
is the sum of the n-th powers of all the roots, primitive and imprimitive,
- [math]\displaystyle{ \eta_q(n) = \sum_{d\mid q} c_d(n), }[/math]
and by Möbius inversion,
- [math]\displaystyle{ c_q(n) = \sum_{d\mid q} \mu\left(\frac{q}d\right)\eta_d(n). }[/math]
It follows from the identity xq − 1 = (x − 1)(xq−1 + xq−2 + ... + x + 1) that
- [math]\displaystyle{ \eta_q(n) = \begin{cases} 0 & q\nmid n\\ q & q\mid n\\ \end{cases} }[/math]
and this leads to the formula
- [math]\displaystyle{ c_q(n)=\sum_{d\mid (q,n)} \mu\left(\frac{q}{d}\right) d, }[/math]
published by Kluyver in 1906.[4]
This shows that cq(n) is always an integer. Compare it with the formula
- [math]\displaystyle{ \phi(q)=\sum_{d \mid q}\mu\left(\frac{q}{d}\right) d. }[/math]
von Sterneck
It is easily shown from the definition that cq(n) is multiplicative when considered as a function of q for a fixed value of n:[5] i.e.
- [math]\displaystyle{ \mbox{If } \;(q,r) = 1 \;\mbox{ then }\; c_q(n)c_r(n)=c_{qr}(n). }[/math]
From the definition (or Kluyver's formula) it is straightforward to prove that, if p is a prime number,
- [math]\displaystyle{ c_p(n) = \begin{cases} -1 &\mbox{ if }p\nmid n\\ \phi(p)&\mbox{ if }p\mid n\\ \end{cases} , }[/math]
and if pk is a prime power where k > 1,
- [math]\displaystyle{ c_{p^k}(n) = \begin{cases} 0 &\mbox{ if }p^{k-1}\nmid n\\ -p^{k-1} &\mbox{ if }p^{k-1}\mid n \mbox{ and }p^k\nmid n\\ \phi(p^k) &\mbox{ if }p^k\mid n\\ \end{cases} . }[/math]
This result and the multiplicative property can be used to prove
- [math]\displaystyle{ c_q(n)= \mu\left(\frac{q}{(q, n)}\right)\frac{\phi(q)}{\phi\left(\frac{q}{(q, n)}\right)}. }[/math]
This is called von Sterneck's arithmetic function.[6] The equivalence of it and Ramanujan's sum is due to Hölder.[7][8]
Other properties of cq(n)
For all positive integers q,
- [math]\displaystyle{ \begin{align} c_1(q) &= 1 \\ c_q(1) &= \mu(q) \\ c_q(q) &= \phi(q) \\ c_q(m) &= c_q(n) && \text{for } m \equiv n \pmod q \\ \end{align} }[/math]
For a fixed value of q the absolute value of the sequence [math]\displaystyle{ \{c_q(1), c_q(2), \ldots\} }[/math] is bounded by φ(q), and for a fixed value of n the absolute value of the sequence [math]\displaystyle{ \{c_1(n), c_2(n), \ldots\} }[/math] is bounded by n.
If q > 1
- [math]\displaystyle{ \sum_{n=a}^{a+q-1} c_q(n)=0. }[/math]
Let m1, m2 > 0, m = lcm(m1, m2). Then[9] Ramanujan's sums satisfy an orthogonality property:
- [math]\displaystyle{ \frac{1}{m}\sum_{k=1}^m c_{m_1}(k) c_{m_2}(k) = \begin{cases} \phi(m) & m_1=m_2=m,\\ 0 & \text{otherwise} \end{cases} }[/math]
Let n, k > 0. Then[10]
- [math]\displaystyle{ \sum_\stackrel{d\mid n}{\gcd(d,k)=1} d\;\frac{\mu(\tfrac{n}{d})}{\phi(d)} =\frac{\mu(n) c_n(k)}{\phi(n)}, }[/math]
known as the Brauer - Rademacher identity.
If n > 0 and a is any integer, we also have[11]
- [math]\displaystyle{ \sum_\stackrel{1\le k\le n}{\gcd(k,n)=1} c_n(k-a) = \mu(n)c_n(a), }[/math]
due to Cohen.
Table
n | |||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | ||
s | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
2 | −1 | 1 | −1 | 1 | −1 | 1 | −1 | 1 | −1 | 1 | −1 | 1 | −1 | 1 | −1 | 1 | −1 | 1 | −1 | 1 | −1 | 1 | −1 | 1 | −1 | 1 | −1 | 1 | −1 | 1 | |
3 | −1 | −1 | 2 | −1 | −1 | 2 | −1 | −1 | 2 | −1 | −1 | 2 | −1 | −1 | 2 | −1 | −1 | 2 | −1 | −1 | 2 | −1 | −1 | 2 | −1 | −1 | 2 | −1 | −1 | 2 | |
4 | 0 | −2 | 0 | 2 | 0 | −2 | 0 | 2 | 0 | −2 | 0 | 2 | 0 | −2 | 0 | 2 | 0 | −2 | 0 | 2 | 0 | −2 | 0 | 2 | 0 | −2 | 0 | 2 | 0 | −2 | |
5 | −1 | −1 | −1 | −1 | 4 | −1 | −1 | −1 | −1 | 4 | −1 | −1 | −1 | −1 | 4 | −1 | −1 | −1 | −1 | 4 | −1 | −1 | −1 | −1 | 4 | −1 | −1 | −1 | −1 | 4 | |
6 | 1 | −1 | −2 | −1 | 1 | 2 | 1 | −1 | −2 | −1 | 1 | 2 | 1 | −1 | −2 | −1 | 1 | 2 | 1 | −1 | −2 | −1 | 1 | 2 | 1 | −1 | −2 | −1 | 1 | 2 | |
7 | −1 | −1 | −1 | −1 | −1 | −1 | 6 | −1 | −1 | −1 | −1 | −1 | −1 | 6 | −1 | −1 | −1 | −1 | −1 | −1 | 6 | −1 | −1 | −1 | −1 | −1 | −1 | 6 | −1 | −1 | |
8 | 0 | 0 | 0 | −4 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | −4 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | −4 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | −4 | 0 | 0 | |
9 | 0 | 0 | −3 | 0 | 0 | −3 | 0 | 0 | 6 | 0 | 0 | −3 | 0 | 0 | −3 | 0 | 0 | 6 | 0 | 0 | −3 | 0 | 0 | −3 | 0 | 0 | 6 | 0 | 0 | −3 | |
10 | 1 | −1 | 1 | −1 | −4 | −1 | 1 | −1 | 1 | 4 | 1 | −1 | 1 | −1 | −4 | −1 | 1 | −1 | 1 | 4 | 1 | −1 | 1 | −1 | −4 | −1 | 1 | −1 | 1 | 4 | |
11 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | 10 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | 10 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | |
12 | 0 | 2 | 0 | −2 | 0 | −4 | 0 | −2 | 0 | 2 | 0 | 4 | 0 | 2 | 0 | −2 | 0 | −4 | 0 | −2 | 0 | 2 | 0 | 4 | 0 | 2 | 0 | −2 | 0 | −4 | |
13 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | 12 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | 12 | −1 | −1 | −1 | −1 | |
14 | 1 | −1 | 1 | −1 | 1 | −1 | −6 | −1 | 1 | −1 | 1 | −1 | 1 | 6 | 1 | −1 | 1 | −1 | 1 | −1 | −6 | −1 | 1 | −1 | 1 | −1 | 1 | 6 | 1 | −1 | |
15 | 1 | 1 | −2 | 1 | −4 | −2 | 1 | 1 | −2 | −4 | 1 | −2 | 1 | 1 | 8 | 1 | 1 | −2 | 1 | −4 | −2 | 1 | 1 | −2 | −4 | 1 | −2 | 1 | 1 | 8 | |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −8 | 0 | 0 | 0 | 0 | 0 | 0 | |
17 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | 16 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | |
18 | 0 | 0 | 3 | 0 | 0 | −3 | 0 | 0 | −6 | 0 | 0 | −3 | 0 | 0 | 3 | 0 | 0 | 6 | 0 | 0 | 3 | 0 | 0 | −3 | 0 | 0 | −6 | 0 | 0 | −3 | |
19 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | 18 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | |
20 | 0 | 2 | 0 | −2 | 0 | 2 | 0 | −2 | 0 | −8 | 0 | −2 | 0 | 2 | 0 | −2 | 0 | 2 | 0 | 8 | 0 | 2 | 0 | −2 | 0 | 2 | 0 | −2 | 0 | −8 | |
21 | 1 | 1 | −2 | 1 | 1 | −2 | −6 | 1 | −2 | 1 | 1 | −2 | 1 | −6 | −2 | 1 | 1 | −2 | 1 | 1 | 12 | 1 | 1 | −2 | 1 | 1 | −2 | −6 | 1 | −2 | |
22 | 1 | −1 | 1 | −1 | 1 | −1 | 1 | −1 | 1 | −1 | −10 | −1 | 1 | −1 | 1 | −1 | 1 | −1 | 1 | −1 | 1 | 10 | 1 | −1 | 1 | −1 | 1 | −1 | 1 | −1 | |
23 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | 22 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | |
24 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | −4 | 0 | 0 | 0 | −8 | 0 | 0 | 0 | −4 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 8 | 0 | 0 | 0 | 4 | 0 | 0 | |
25 | 0 | 0 | 0 | 0 | −5 | 0 | 0 | 0 | 0 | −5 | 0 | 0 | 0 | 0 | −5 | 0 | 0 | 0 | 0 | −5 | 0 | 0 | 0 | 0 | 20 | 0 | 0 | 0 | 0 | −5 | |
26 | 1 | −1 | 1 | −1 | 1 | −1 | 1 | −1 | 1 | −1 | 1 | −1 | −12 | −1 | 1 | −1 | 1 | −1 | 1 | −1 | 1 | −1 | 1 | −1 | 1 | 12 | 1 | −1 | 1 | −1 | |
27 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 18 | 0 | 0 | 0 | |
28 | 0 | 2 | 0 | −2 | 0 | 2 | 0 | −2 | 0 | 2 | 0 | −2 | 0 | −12 | 0 | −2 | 0 | 2 | 0 | −2 | 0 | 2 | 0 | −2 | 0 | 2 | 0 | 12 | 0 | 2 | |
29 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | 28 | −1 | |
30 | −1 | 1 | 2 | 1 | 4 | −2 | −1 | 1 | 2 | −4 | −1 | −2 | −1 | 1 | −8 | 1 | −1 | −2 | −1 | −4 | 2 | 1 | −1 | −2 | 4 | 1 | 2 | 1 | −1 | 8 |
Ramanujan expansions
If f(n) is an arithmetic function (i.e. a complex-valued function of the integers or natural numbers), then a convergent infinite series of the form:
- [math]\displaystyle{ f(n)=\sum_{q=1}^\infty a_q c_q(n) }[/math]
or of the form:
- [math]\displaystyle{ f(q)=\sum_{n=1}^\infty a_n c_q(n) }[/math]
where the ak ∈ C, is called a Ramanujan expansion[12] of f(n).
Ramanujan found expansions of some of the well-known functions of number theory. All of these results are proved in an "elementary" manner (i.e. only using formal manipulations of series and the simplest results about convergence).[13][14][15]
The expansion of the zero function depends on a result from the analytic theory of prime numbers, namely that the series
- [math]\displaystyle{ \sum_{n=1}^\infty\frac{\mu(n)}{n} }[/math]
converges to 0, and the results for r(n) and r′(n) depend on theorems in an earlier paper.[16]
All the formulas in this section are from Ramanujan's 1918 paper.
Generating functions
The generating functions of the Ramanujan sums are Dirichlet series:
- [math]\displaystyle{ \zeta(s) \sum_{\delta\,\mid\,q} \mu\left(\frac{q}{\delta}\right) \delta^{1-s} = \sum_{n=1}^\infty \frac{c_q(n)}{n^s} }[/math]
is a generating function for the sequence cq(1), cq(2), ... where q is kept constant, and
- [math]\displaystyle{ \frac{\sigma_{r-1}(n)}{n^{r-1}\zeta(r)}= \sum_{q=1}^\infty \frac{c_q(n)}{q^{r}} }[/math]
is a generating function for the sequence c1(n), c2(n), ... where n is kept constant.
There is also the double Dirichlet series
- [math]\displaystyle{ \frac{\zeta(s) \zeta(r+s-1)}{\zeta(r)}= \sum_{q=1}^\infty \sum_{n=1}^\infty \frac{c_q(n)}{q^r n^s}. }[/math]
σk(n)
σk(n) is the divisor function (i.e. the sum of the k-th powers of the divisors of n, including 1 and n). σ0(n), the number of divisors of n, is usually written d(n) and σ1(n), the sum of the divisors of n, is usually written σ(n).
If s > 0,
- [math]\displaystyle{ \begin{align} \sigma_s(n) &= n^s \zeta(s+1) \left(\frac{c_1(n)}{1^{s+1}}+ \frac{c_2(n)}{2^{s+1}}+ \frac{c_3(n)}{3^{s+1}}+\cdots\right) \\ \sigma_{-s}(n) &=\zeta(s+1)\left(\frac{c_1(n)}{1^{s+1}}+\frac{c_2(n)}{2^{s+1}}+\frac{c_3(n)}{3^{s+1}}+\cdots\right) \end{align} }[/math]
Setting s = 1 gives
- [math]\displaystyle{ \sigma(n)= \frac{\pi^2}{6}n \left(\frac{c_1(n)}{1}+ \frac{c_2(n)}{4}+ \frac{c_3(n)}{9}+ \cdots \right). }[/math]
If the Riemann hypothesis is true, and [math]\displaystyle{ -\tfrac12\lt s\lt \tfrac12, }[/math]
- [math]\displaystyle{ \sigma_s(n) = \zeta(1-s) \left(\frac{c_1(n)}{1^{1-s}}+ \frac{c_2(n)}{2^{1-s}}+ \frac{c_3(n)}{3^{1-s}}+ \cdots \right) = n^s \zeta(1+s) \left( \frac{c_1(n)}{1^{1+s}}+ \frac{c_2(n)}{2^{1+s}}+ \frac{c_3(n)}{3^{1+s}}+ \cdots \right). }[/math]
d(n)
d(n) = σ0(n) is the number of divisors of n, including 1 and n itself.
- [math]\displaystyle{ \begin{align} -d(n) &= \frac{\log 1}{1}c_1(n)+ \frac{\log 2}{2}c_2(n)+ \frac{\log 3}{3}c_3(n)+ \cdots \\ -d(n)(2\gamma+\log n) &= \frac{\log^2 1}{1}c_1(n)+ \frac{\log^2 2}{2}c_2(n)+ \frac{\log^2 3}{3}c_3(n)+ \cdots \end{align} }[/math]
where γ = 0.5772... is the Euler–Mascheroni constant.
φ(n)
Euler's totient function φ(n) is the number of positive integers less than n and coprime to n. Ramanujan defines a generalization of it, if
- [math]\displaystyle{ n=p_1^{a_1}p_2^{a_2}p_3^{a_3}\cdots }[/math]
is the prime factorization of n, and s is a complex number, let
- [math]\displaystyle{ \varphi_s(n)=n^s(1-p_1^{-s})(1-p_2^{-s})(1-p_3^{-s})\cdots, }[/math]
so that φ1(n) = φ(n) is Euler's function.[17]
He proves that
- [math]\displaystyle{ \frac{\mu(n)n^s}{\varphi_s(n)\zeta(s)}= \sum_{\nu=1}^\infty \frac{\mu(n\nu)}{\nu^s} }[/math]
and uses this to show that
- [math]\displaystyle{ \frac{\varphi_s(n)\zeta(s+1)}{n^s}=\frac{\mu(1)c_1(n)}{\varphi_{s+1}(1)}+\frac{\mu(2)c_2(n)}{\varphi_{s+1}(2)}+\frac{\mu(3)c_3(n)}{\varphi_{s+1}(3)}+\cdots. }[/math]
Letting s = 1,
- [math]\displaystyle{ \varphi(n) = \frac{6}{\pi^2}n \left(c_1(n) -\frac{c_2(n)}{2^2-1} -\frac{c_3(n)}{3^2-1} -\frac{c_5(n)}{5^2-1}+\frac{c_6(n)}{(2^2-1)(3^2-1)} - \frac{c_7(n)}{7^2-1} +\frac{c_{10}(n)}{(2^2-1)(5^2-1)} -\cdots \right). }[/math]
Note that the constant is the inverse[18] of the one in the formula for σ(n).
Λ(n)
Von Mangoldt's function Λ(n) = 0 unless n = pk is a power of a prime number, in which case it is the natural logarithm log p.
- [math]\displaystyle{ -\Lambda(m) = c_m(1)+ \frac{1}{2} c_m(2)+ \frac13c_m(3)+\cdots }[/math]
Zero
For all n > 0,
- [math]\displaystyle{ 0= c_1(n)+ \frac12c_2(n)+ \frac13c_3(n)+ \cdots. }[/math]
This is equivalent to the prime number theorem.[19][20]
r2s(n) (sums of squares)
r2s(n) is the number of way of representing n as the sum of 2s squares, counting different orders and signs as different (e.g., r2(13) = 8, as 13 = (±2)2 + (±3)2 = (±3)2 + (±2)2.)
Ramanujan defines a function δ2s(n) and references a paper[21] in which he proved that r2s(n) = δ2s(n) for s = 1, 2, 3, and 4. For s > 4 he shows that δ2s(n) is a good approximation to r2s(n).
s = 1 has a special formula:
- [math]\displaystyle{ \delta_2(n)= \pi \left(\frac{c_1(n)}{1}- \frac{c_3(n)}{3}+ \frac{c_5(n)}{5}- \cdots \right). }[/math]
In the following formulas the signs repeat with a period of 4.
- [math]\displaystyle{ \begin{align} \delta_{2s}(n) &= \frac{\pi^s n^{s-1}}{(s-1)!} \left( \frac{c_1(n)}{1^s}+ \frac{c_4(n)}{2^s}+ \frac{c_3(n)}{3^s}+\frac{c_8(n)}{4^s}+ \frac{c_5(n)}{5^s}+ \frac{c_{12}(n)}{6^s}+ \frac{c_7(n)}{7^s}+ \frac{c_{16}(n)}{8^s}+ \cdots \right) && s \equiv 0 \pmod 4 \\[6pt] \delta_{2s}(n) &= \frac{\pi^s n^{s-1}}{(s-1)!} \left( \frac{c_1(n)}{1^s}- \frac{c_4(n)}{2^s}+ \frac{c_3(n)}{3^s}- \frac{c_8(n)}{4^s}+ \frac{c_5(n)}{5^s}- \frac{c_{12}(n)}{6^s}+ \frac{c_7(n)}{7^s}- \frac{c_{16}(n)}{8^s}+ \cdots \right) && s \equiv 2 \pmod 4 \\[6pt] \delta_{2s}(n) &= \frac{\pi^s n^{s-1}}{(s-1)!} \left( \frac{c_1(n)}{1^s}+ \frac{c_4(n)}{2^s}- \frac{c_3(n)}{3^s}+ \frac{c_8(n)}{4^s}+ \frac{c_5(n)}{5^s}+ \frac{c_{12}(n)}{6^s}- \frac{c_7(n)}{7^s}+ \frac{c_{16}(n)}{8^s}+ \cdots \right) && s \equiv 1 \pmod 4 \text{ and } s \gt 1 \\[6pt] \delta_{2s}(n) &= \frac{\pi^s n^{s-1}}{(s-1)!} \left(\frac{c_1(n)}{1^s}- \frac{c_4(n)}{2^s}- \frac{c_3(n)}{3^s}- \frac{c_8(n)}{4^s}+ \frac{c_5(n)}{5^s}-\frac{c_{12}(n)}{6^s}-\frac{c_7(n)}{7^s}-\frac{c_{16}(n)}{8^s}+ \cdots \right) && s \equiv 3 \pmod 4 \\ \end{align} }[/math]
and therefore,
- [math]\displaystyle{ \begin{align} r_2(n) &= \pi \left(\frac{c_1(n)}{1}- \frac{c_3(n)}{3}+ \frac{c_5(n)}{5}- \frac{c_7(n)}{7}+ \frac{c_{11}(n)}{11}-\frac{c_{13}(n)}{13}+ \frac{c_{15}(n)}{15} - \frac{c_{17}(n)}{17} + \cdots \right) \\[6pt] r_4(n) &= \pi^2 n \left( \frac{c_1(n)}{1}- \frac{c_4(n)}{4}+ \frac{c_3(n)}{9}- \frac{c_8(n)}{16}+ \frac{c_5(n)}{25}- \frac{c_{12}(n)}{36}+ \frac{c_7(n)}{49}- \frac{c_{16}(n)}{64}+ \cdots \right) \\[6pt] r_6(n) &= \frac{\pi^3 n^2}{2} \left( \frac{c_1(n)}{1}- \frac{c_4(n)}{8}- \frac{c_3(n)}{27}- \frac{c_8(n)}{64}+ \frac{c_5(n)}{125}- \frac{c_{12}(n)}{216}- \frac{c_7(n)}{343} - \frac{c_{16}(n)}{512}+ \cdots \right) \\[6pt] r_8(n) &= \frac{\pi^4 n^3}{6} \left(\frac{c_1(n)}{1}+ \frac{c_4(n)}{16}+ \frac{c_3(n)}{81}+ \frac{c_8(n)}{256}+ \frac{c_5(n)}{625}+ \frac{c_{12}(n)}{1296}+ \frac{c_7(n)}{2401}+ \frac{c_{16}(n)}{4096}+ \cdots \right) \end{align} }[/math]
r′2s(n) (sums of triangles)
[math]\displaystyle{ r'_{2s}(n) }[/math] is the number of ways n can be represented as the sum of 2s triangular numbers (i.e. the numbers 1, 3 = 1 + 2, 6 = 1 + 2 + 3, 10 = 1 + 2 + 3 + 4, 15, ...; the n-th triangular number is given by the formula n(n + 1)/2.)
The analysis here is similar to that for squares. Ramanujan refers to the same paper as he did for the squares, where he showed that there is a function [math]\displaystyle{ \delta'_{2s}(n) }[/math] such that [math]\displaystyle{ r'_{2s}(n) = \delta'_{2s}(n) }[/math] for s = 1, 2, 3, and 4, and that for s > 4, [math]\displaystyle{ \delta'_{2s}(n) }[/math] is a good approximation to [math]\displaystyle{ r'_{2s}(n). }[/math]
Again, s = 1 requires a special formula:
- [math]\displaystyle{ \delta'_2(n)= \frac{\pi}{4} \left(\frac{c_1(4n+1)}{1}-\frac{c_3(4n+1)}{3}+ \frac{c_5(4n+1)}{5}- \frac{c_7(4n+1)}{7}+ \cdots \right). }[/math]
If s is a multiple of 4,
- [math]\displaystyle{ \begin{align} \delta'_{2s}(n) &= \frac{(\frac{\pi}{2})^s}{(s-1)!}\left(n+\frac{s}4\right)^{s-1} \left( \frac{c_1(n+\frac{s}4)}{1^s}+ \frac{c_3(n+\frac{s}4)}{3^s}+ \frac{c_5(n+\frac{s}4)}{5^s}+ \cdots \right) && s \equiv 0 \pmod 4 \\[6pt] \delta'_{2s}(n) &= \frac{(\frac{\pi}{2})^s}{(s-1)!}\left(n+\frac{s}4\right)^{s-1} \left( \frac{c_1(2n+\frac{s}2)}{1^s}+ \frac{c_3(2n+\frac{s}2)}{3^s}+ \frac{c_5(2n+\frac{s}2)}{5^s}+ \cdots \right) && s \equiv 2 \pmod 4 \\[6pt] \delta'_{2s}(n) &= \frac{(\frac{\pi}{2})^s}{(s-1)!}\left(n+\frac{s}4\right)^{s-1} \left(\frac{c_1(4n+s)}{1^s}- \frac{c_3(4n+s)}{3^s}+\frac{c_5(4n+s)}{5^s}- \cdots \right) && s \equiv 1 \pmod 2 \text{ and } s \gt 1 \end{align} }[/math]
Therefore,
- [math]\displaystyle{ \begin{align} r'_2(n) &= \frac{\pi}{4} \left(\frac{c_1(4n+1)}{1}- \frac{c_3(4n+1)}{3}+ \frac{c_5(4n+1)}{5}- \frac{c_7(4n+1)}{7}+ \cdots \right) \\[6pt] r'_4(n) &= \left(\frac{\pi}{2}\right)^2\left(n+\frac12\right) \left(\frac{c_1(2n+1)}{1}+\frac{c_3(2n+1)}{9}+ \frac{c_5(2n+1)}{25}+ \cdots \right) \\[6pt] r'_6(n) &= \frac{(\frac{\pi}{2})^3}{2}\left(n+\frac34\right)^2 \left(\frac{c_1(4n+3)}{1}-\frac{c_3(4n+3)}{27}+ \frac{c_5(4n+3)}{125}-\cdots \right)\\[6pt] r'_8(n) &= \frac{(\frac{\pi}{2})^4}{6}(n+1)^3 \left(\frac{c_1(n+1)}{1}+ \frac{c_3(n+1)}{81}+ \frac{c_5(n+1)}{625}+ \cdots \right) \end{align} }[/math]
Sums
Let
- [math]\displaystyle{ \begin{align} T_q(n) &= c_q(1) + c_q(2) + \cdots + c_q(n) \\ U_q(n) &= T_q(n) + \tfrac12\phi(q) \end{align} }[/math]
Then for s > 1,
- [math]\displaystyle{ \begin{align} \sigma_{-s}(1) + \cdots + \sigma_{-s}(n) &= \zeta(s+1) \left(n+ \frac{T_2(n)}{2^{s+1}}+ \frac{T_3(n)}{3^{s+1}}+\frac{T_4(n)}{4^{s+1}} +\cdots \right) \\ &= \zeta(s+1) \left(n+\tfrac12+ \frac{U_2(n)}{2^{s+1}}+ \frac{U_3(n)}{3^{s+1}}+ \frac{U_4(n)}{4^{s+1}} +\cdots \right)- \tfrac12\zeta(s) \\ d(1)+ \cdots+ d(n) &= - \frac{T_2(n)\log2}{2} - \frac{T_3(n)\log3}{3} - \frac{T_4(n)\log4}{4} - \cdots \\ d(1)\log 1 + \cdots + d(n)\log n &= -\frac{T_2(n)(2\gamma\log2-\log^22)}{2} -\frac{T_3(n)(2\gamma\log3-\log^23)}{3} -\frac{T_4(n)(2\gamma\log4-\log^24)}{4} -\cdots \\ r_2(1)+ \cdots+ r_2(n) &= \pi \left(n -\frac{T_3(n)}{3} +\frac{T_5(n)}{5} -\frac{T_7(n)}{7} +\cdots \right) \end{align} }[/math]
See also
Notes
- ↑ Ramanujan, On Certain Trigonometric Sums ...
(Papers, p. 179). In a footnote cites pp. 360–370 of the Dirichlet–Dedekind Vorlesungen über Zahlentheorie, 4th ed.These sums are obviously of great interest, and a few of their properties have been discussed already. But, so far as I know, they have never been considered from the point of view which I adopt in this paper; and I believe that all the results which it contains are new.
- ↑ Nathanson, ch. 8.
- ↑ Hardy & Wright, Thms 65, 66
- ↑ G. H. Hardy, P. V. Seshu Aiyar, & B. M. Wilson, notes to On certain trigonometrical sums ..., Ramanujan, Papers, p. 343
- ↑ Schwarz & Spilken (1994) p.16
- ↑ B. Berndt, commentary to On certain trigonometrical sums..., Ramanujan, Papers, p. 371
- ↑ Knopfmacher, p. 196
- ↑ Hardy & Wright, p. 243
- ↑ Tóth, external links, eq. 6
- ↑ Tóth, external links, eq. 17.
- ↑ Tóth, external links, eq. 8.
- ↑ B. Berndt, commentary to On certain trigonometrical sums..., Ramanujan, Papers, pp. 369–371
- ↑ Ramanujan, On certain trigonometrical sums...
(Papers, p. 179)The majority of my formulae are "elementary" in the technical sense of the word — they can (that is to say) be proved by a combination of processes involving only finite algebra and simple general theorems concerning infinite series
- ↑ The theory of formal Dirichlet series is discussed in Hardy & Wright, § 17.6 and in Knopfmacher.
- ↑ Knopfmacher, ch. 7, discusses Ramanujan expansions as a type of Fourier expansion in an inner product space which has the cq as an orthogonal basis.
- ↑ Ramanujan, On Certain Arithmetical Functions
- ↑ This is Jordan's totient function, Js(n).
- ↑ Cf. Hardy & Wright, Thm. 329, which states that [math]\displaystyle{ \;\frac{6}{\pi^2}\lt \frac{\sigma(n)\phi(n)}{n^2}\lt 1. }[/math]
- ↑ Hardy, Ramanujan, p. 141
- ↑ B. Berndt, commentary to On certain trigonometrical sums..., Ramanujan, Papers, p. 371
- ↑ Ramanujan, On Certain Arithmetical Functions
References
- Hardy, G. H. (1999), Ramanujan: Twelve Lectures on Subjects Suggested by his Life and Work, Providence RI: AMS / Chelsea, ISBN 978-0-8218-2023-0
- Hardy, G. H.; Wright, E. M. (1979) [1938]. An Introduction to the Theory of Numbers (5th ed.). Oxford: Clarendon Press. ISBN 0-19-853171-0.
- Knopfmacher, John (1990), Abstract Analytic Number Theory (2nd ed.), New York: Dover, ISBN 0-486-66344-2
- Nathanson, Melvyn B. (1996), Additive Number Theory: the Classical Bases, Graduate Texts in Mathematics, 164, Springer-Verlag, Section A.7, ISBN 0-387-94656-X.
- Nicol, C. A. (1962). "Some formulas involving Ramanujan sums". Can. J. Math. 14: 284–286. doi:10.4153/CJM-1962-019-8.
- Ramanujan, Srinivasa (1918), "On Certain Trigonometric Sums and their Applications in the Theory of Numbers", Transactions of the Cambridge Philosophical Society 22 (15): 259–276 (pp. 179–199 of his Collected Papers)
- Ramanujan, Srinivasa (1916), "On Certain Arithmetical Functions", Transactions of the Cambridge Philosophical Society 22 (9): 159–184 (pp. 136–163 of his Collected Papers)
- Ramanujan, Srinivasa (2000), Collected Papers, Providence RI: AMS / Chelsea, ISBN 978-0-8218-2076-6
- Schwarz, Wolfgang; Spilker, Jürgen (1994), Arithmetical Functions. An introduction to elementary and analytic properties of arithmetic functions and to some of their almost-periodic properties, London Mathematical Society Lecture Note Series, 184, Cambridge University Press, ISBN 0-521-42725-8
External links
- Tóth, László (2011). "Sums of products of Ramanujan sums". Annali dell'universita' di Ferrara 58: 183–197. doi:10.1007/s11565-011-0143-3.
Original source: https://en.wikipedia.org/wiki/Ramanujan's sum.
Read more |