Tridecahedron

From HandWiki
Revision as of 17:21, 6 February 2024 by LinuxGuru (talk | contribs) (over-write)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Short description: Polyhedron with 13 faces
Common tridecahedrons
Space-Filling Triskaidecahedron.svg
Space-filling tridecahedron
Elongated hexagonal pyramid.png
Elongated hexagonal pyramid
Hendecagonal prism.png
Hendecagonal prism
Gyroelongated square pyramid.png
Gyroelongated square pyramid

A tridecahedron, or triskaidecahedron, is a polyhedron with thirteen faces. There are numerous topologically distinct forms of a tridecahedron, for example the dodecagonal pyramid and hendecagonal prism. However, a tridecahedron cannot be a regular polyhedron, because there is no regular polygon that can form a regular tridecahedron, and there are only five known regular polyhedra.[notes 1][1]

Convex

There are 96,262,938 topologically distinct convex tridecahedra, excluding mirror images, having at least 9 vertices.[2] (Two polyhedra are "topologically distinct" if they have intrinsically different arrangements of faces and vertices, such that it is impossible to distort one into the other simply by changing the lengths of edges or the angles between edges or faces.) There is a pseudo-space-filling tridecahedron that can fill all of 3-space together with its mirror-image.[3]

Common tridecahedrons

Examples

Name (vertex layout) Symbol Stereogram Expanded view Faces Edges Apexes
Hendecagonal prism t{2,11}
{11}x{}
CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 11.pngCDel node.png
hendecagonal prism  13  square × 11
hendecagon × 2
33 22
Dodecagonal pyramid ( )∨{12} dodecagonal pyramid  13  triangle × 12
dodecagon × 1
24 13
Elongated hexagonal pyramid Elongated hexagonal pyramid  13  triangle × 6
square × 6
hexagon × 1
24 13
Space-filling tridecahedron Space-Filling Triskaidecahedron.svg Net of Space-Filling Triskaidecahedron.svg 13 quadrilateral × 6
pentagon × 6
hexagon × 1
30 19
Gyroelongated square pyramid Gyroelongated square pyramid.png Johnson solid 10 net.png  13  triangle × 12
square × 1
20 9
truncated hexagonal trapohedron 截頂角六方偏方面體.svg 13 1 hexagon base
6 pentagon sides
6 kite sides
30 19
Biaugmented pentagonal prism Biaugmented pentagonal prism.png Johnson solid 53 net.png 13 triangle × 8
square × 3
pentagon × 2
23 12

Hendecagonal prism

Regular hendecagonal prism

A hendecagonal prism is a prism with a hendecagon base. It is a type of tridecahedron, which consists of 13 faces, 22 vertices, and 33 sides. A regular hendecagonal prism is a hendecagonal prism whose faces are regular hendecagons, and each of its vertices is a common vertex of 2 squares and 1 hendecagon. In a vertex figure a hendecagonal prism is represented by [math]\displaystyle{ 4{.}4{.}11 }[/math]; in Schläfly notation it can be represented by {11}×{} or t{2, 11}; CDel node 1.pngCDel 1x.pngCDel 1x.pngCDel node.pngCDel 2.pngCDel node 1.png can be used in a Coxeter-Dynkin diagram to represent it; its Wythoff symbol is 2 11 | 2; in Conway polyhedron notation it can be represented by P11. If the side length of the base of a regular hendecagonal prism is [math]\displaystyle{ s }[/math] and the height is [math]\displaystyle{ h }[/math], then its volume [math]\displaystyle{ V }[/math] and surface area [math]\displaystyle{ S }[/math] are:[4]

[math]\displaystyle{ V=\frac{11 h s^2 \cot{\frac{\pi}{11}}}{4}\approx 9.36564 h s^2 }[/math]
[math]\displaystyle{ S=11s\left(h+\frac{1}{2}s\cot{\frac{\pi}{11}}\right)\approx 11s\left(h+1.70284s\right) }[/math]

Dodecagonal pyramid

Dodecagonal pyramid

A dodecagonal pyramid is a pyramid with a dodecagonal base. It is a type of tridecahedron, which has 13 faces, 24 edges, and 13 vertices, and its dual polyhedron is itself.[5] A regular dodecagonal pyramid is a dodecagonal pyramid whose base is a regular dodecagon. If the side length of the base of a regular twelve-sided pyramid is [math]\displaystyle{ s }[/math] and the height is [math]\displaystyle{ h }[/math], then its volume [math]\displaystyle{ V }[/math] and surface area [math]\displaystyle{ S }[/math] are:[5]

[math]\displaystyle{ V=\left(2+\sqrt{3}\right)hs^2\approx 3.73205 h s^2 }[/math]
[math]\displaystyle{ S=3s\left(\sqrt{4h^2+\left(7+4\sqrt{3}\right)s^2}+\left(2+\sqrt{3}\right)s\right)\approx 3s\left(\sqrt{4h^2+13.9282s^2}+3.73205s\right) }[/math]

Space-filling tridecahedron

Space-filling tridecahedron
Space-Filling Triskaidecahedron.svg
Type6 trapezoids Tetragons of Space-Filling Triskaidecahedron.svg
6 pentagons 20px
1 regular hexagons Hexagon of Space-Filling Triskaidecahedron.svg
Faces13
Edges30
Vertices19

A space-filling tridecahedron[6][7] is a tridecahedron that can completely fill three-dimensional space without leaving gaps. It has 13 faces, 30 edges, and 19 vertices. Among the thirteen faces, there are six trapezoids, six pentagons and one regular hexagon.[8]

Dual polyhedron

The polyhedron's dual polyhedron is an enneadecahedron. It is similar to a twisted half-cube, but one of its vertices is treated as a face before twisting.

Image Rotation animation Expanded view
Original polyhedron
tridecahedron
Space-Filling Triskaidecahedron.svg Space-Filling Triskaidecahedron.gif Net of Space-Filling Triskaidecahedron.svg
Dual polyhedron
enneadecahedron
Image of a polyhedron vertice as a face to snub from hemicube.svg Animations of a polyhedron vertice as a face to snub from hemicube.gif Net of a polyhedron vertice as a face to snub from hemicube.svg

Notes

  1. Even if there were 13 faces that were all congruent, it would still not be considered a regular polyhedra. In addition to being congruent on each face of a regular polyhedron, the angles and sides on each face must be equal in size. Only regular polygons meet this condition, but the faces of a thirteen-sided shape do not, so there cannot be a regular tridecahedron.

References

External links