Huge cardinal
In mathematics, a cardinal number [math]\displaystyle{ \kappa }[/math] is called huge if there exists an elementary embedding [math]\displaystyle{ j : V \to M }[/math] from [math]\displaystyle{ V }[/math] into a transitive inner model [math]\displaystyle{ M }[/math] with critical point [math]\displaystyle{ \kappa }[/math] and
- [math]\displaystyle{ {}^{j(\kappa)}M \subset M. }[/math]
Here, [math]\displaystyle{ {}^\alpha M }[/math] is the class of all sequences of length [math]\displaystyle{ \alpha }[/math] whose elements are in [math]\displaystyle{ M }[/math].
Huge cardinals were introduced by Kenneth Kunen (1978).
Variants
In what follows, [math]\displaystyle{ j^n }[/math] refers to the [math]\displaystyle{ n }[/math]-th iterate of the elementary embedding [math]\displaystyle{ j }[/math], that is, [math]\displaystyle{ j }[/math] composed with itself [math]\displaystyle{ n }[/math] times, for a finite ordinal [math]\displaystyle{ n }[/math]. Also, [math]\displaystyle{ {}^{\lt \alpha}M }[/math] is the class of all sequences of length less than [math]\displaystyle{ \alpha }[/math] whose elements are in [math]\displaystyle{ M }[/math]. Notice that for the "super" versions, [math]\displaystyle{ \gamma }[/math] should be less than [math]\displaystyle{ j(\kappa) }[/math], not [math]\displaystyle{ {j^n(\kappa)} }[/math].
κ is almost n-huge if and only if there is [math]\displaystyle{ j : V \to M }[/math] with critical point [math]\displaystyle{ \kappa }[/math] and
- [math]\displaystyle{ {}^{\lt j^n(\kappa)}M \subset M. }[/math]
κ is super almost n-huge if and only if for every ordinal γ there is [math]\displaystyle{ j : V \to M }[/math] with critical point [math]\displaystyle{ \kappa }[/math], [math]\displaystyle{ \gamma\lt j(\kappa) }[/math], and
- [math]\displaystyle{ {}^{\lt j^n(\kappa)}M \subset M. }[/math]
κ is n-huge if and only if there is [math]\displaystyle{ j : V \to M }[/math] with critical point [math]\displaystyle{ \kappa }[/math] and
- [math]\displaystyle{ {}^{j^n(\kappa)}M \subset M. }[/math]
κ is super n-huge if and only if for every ordinal [math]\displaystyle{ \gamma }[/math] there is [math]\displaystyle{ j : V \to M }[/math] with critical point [math]\displaystyle{ \kappa }[/math], [math]\displaystyle{ \gamma\lt j(\kappa) }[/math], and
- [math]\displaystyle{ {}^{j^n(\kappa)}M \subset M. }[/math]
Notice that 0-huge is the same as measurable cardinal; and 1-huge is the same as huge. A cardinal satisfying one of the rank into rank axioms is [math]\displaystyle{ n }[/math]-huge for all finite [math]\displaystyle{ n }[/math].
The existence of an almost huge cardinal implies that Vopěnka's principle is consistent; more precisely any almost huge cardinal is also a Vopěnka cardinal.
Kanamori, Reinhardt, and Solovay defined seven large cardinal properties between extendibility and hugeness in strength, named [math]\displaystyle{ \mathbf A_2(\kappa) }[/math] through [math]\displaystyle{ \mathbf A_7(\kappa) }[/math], and a property [math]\displaystyle{ \mathbf A_6^\ast(\kappa) }[/math].[1] The additional property [math]\displaystyle{ \mathbf A_1(\kappa) }[/math] is equivalent to "[math]\displaystyle{ \kappa }[/math] is huge", and [math]\displaystyle{ \mathbf A_3(\kappa) }[/math] is equivalent to "[math]\displaystyle{ \kappa }[/math] is [math]\displaystyle{ \lambda }[/math]-supercompact for all [math]\displaystyle{ \lambda\lt j(\kappa) }[/math]".
Consistency strength
The cardinals are arranged in order of increasing consistency strength as follows:
- almost [math]\displaystyle{ n }[/math]-huge
- super almost [math]\displaystyle{ n }[/math]-huge
- [math]\displaystyle{ n }[/math]-huge
- super [math]\displaystyle{ n }[/math]-huge
- almost [math]\displaystyle{ n+1 }[/math]-huge
The consistency of a huge cardinal implies the consistency of a supercompact cardinal, nevertheless, the least huge cardinal is smaller than the least supercompact cardinal (assuming both exist).
ω-huge cardinals
This section does not cite any external source. HandWiki requires at least one external source. See citing external sources. (August 2023) (Learn how and when to remove this template message) |
One can try defining an [math]\displaystyle{ \omega }[/math]-huge cardinal [math]\displaystyle{ \kappa }[/math] as one such that an elementary embedding [math]\displaystyle{ j : V \to M }[/math] from [math]\displaystyle{ V }[/math] into a transitive inner model [math]\displaystyle{ M }[/math] with critical point [math]\displaystyle{ \kappa }[/math] and [math]\displaystyle{ {}^\lambda M\subseteq M }[/math], where [math]\displaystyle{ \lambda }[/math] is the supremum of [math]\displaystyle{ j^n(\kappa) }[/math] for positive integers [math]\displaystyle{ n }[/math]. However Kunen's inconsistency theorem shows that such cardinals are inconsistent in ZFC, though it is still open whether they are consistent in ZF. Instead an [math]\displaystyle{ \omega }[/math]-huge cardinal [math]\displaystyle{ \kappa }[/math] is defined as the critical point of an elementary embedding from some rank [math]\displaystyle{ V_{\lambda+1} }[/math] to itself. This is closely related to the rank-into-rank axiom I1.
See also
- List of large cardinal properties
- The Dehornoy order on a braid group was motivated by properties of huge cardinals.
References
- ↑ A. Kanamori, W. N. Reinhardt, R. Solovay, "Strong Axioms of Infinity and Elementary Embeddings", pp.110--111. Annals of Mathematical Logic vol. 13 (1978).
- Kanamori, Akihiro (2003), The Higher Infinite : Large Cardinals in Set Theory from Their Beginnings (2nd ed.), Springer, ISBN 3-540-00384-3.
- Kunen, Kenneth (1978), "Saturated ideals", The Journal of Symbolic Logic 43 (1): 65–76, doi:10.2307/2271949, ISSN 0022-4812.
- Maddy, Penelope (1988), "Believing the Axioms. II", The Journal of Symbolic Logic 53 (3): 736-764 (esp. 754-756), doi:10.2307/2274569. A copy of parts I and II of this article with corrections is available at the author's web page.
Original source: https://en.wikipedia.org/wiki/Huge cardinal.
Read more |