Andreotti–Norguet formula
The Andreotti–Norguet formula, first introduced by Aldo Andreotti and François Norguet (1964, 1966),[1] is a higher–dimensional analogue of Cauchy integral formula for expressing the derivatives of a holomorphic function. Precisely, this formula express the value of the partial derivative of any multiindex order of a holomorphic function of several variables,[2] in any interior point of a given bounded domain, as a hypersurface integral of the values of the function on the boundary of the domain itself. In this respect, it is analogous and generalizes the Bochner–Martinelli formula,[3] reducing to it when the absolute value of the multiindex order of differentiation is 0.[4] When considered for functions of n = 1 complex variables, it reduces to the ordinary Cauchy formula for the derivative of a holomorphic function:[5] however, when n > 1, its integral kernel is not obtainable by simple differentiation of the Bochner–Martinelli kernel.[6]
Historical note
The Andreotti–Norguet formula was first published in the research announcement (Andreotti Norguet):[7] however, its full proof was only published later in the paper (Andreotti Norguet).[8] Another, different proof of the formula was given by (Martinelli 1975).[9] In 1977 and 1978, Lev Aizenberg gave still another proof and a generalization of the formula based on the Cauchy–Fantappiè–Leray kernel instead on the Bochner–Martinelli kernel.[10]
The Andreotti–Norguet integral representation formula
Notation
The notation adopted in the following description of the integral representation formula is the one used by (Kytmanov 1995) and by (Kytmanov Myslivets): the notations used in the original works and in other references, though equivalent, are significantly different.[11] Precisely, it is assumed that
- n > 1 is a fixed natural number,
- [math]\displaystyle{ \zeta, z \in \Complex^n }[/math] are complex vectors,
- [math]\displaystyle{ \alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{N}^n }[/math] is a multiindex whose absolute value is |α|,
- [math]\displaystyle{ D \subset \Complex^n }[/math] is a bounded domain whose closure is D,
- A(D) is the function space of functions holomorphic on the interior of D and continuous on its boundary ∂D.
- the iterated Wirtinger derivatives of order α of a given complex valued function f ∈ A(D) are expressed using the following simplified notation: [math]\displaystyle{ \partial^\alpha f = \frac{\partial^{|\alpha|} f}{\partial z_1^{\alpha_1} \cdots \partial z_n^{\alpha_n}}. }[/math]
The Andreotti–Norguet kernel
α, the Andreotti–Norguet kernel ωα (ζ, z) is the following differential form in ζ of bidegree (n, n − 1): [math]\displaystyle{ \omega_\alpha(\zeta,z) = \frac{(n-1)!\alpha_1!\cdots\alpha_n!}{(2\pi i)^n} \sum_{j=1}^n \frac{(-1)^{j-1}(\bar\zeta_j-\overline z_j)^{\alpha_j+1} \, d\bar\zeta^{\alpha+I}[j] \land d\zeta}{\left(|z_1-\zeta_1|^{2(\alpha_1+1)} + \cdots + |z_n-\zeta_n|^{2(\alpha_n+1)}\right)^n}, }[/math] where [math]\displaystyle{ I = (1, \dots, 1) \in \N^n }[/math] and [math]\displaystyle{ d\bar\zeta^{\alpha+I}[j] = d\bar\zeta_1^{\alpha_1+1} \land \cdots \land d\bar\zeta_{j-1}^{\alpha_{j+1}+1} \land d\bar\zeta_{j+1}^{\alpha_{j-1}+1} \land \cdots \land d\bar\zeta_n^{\alpha_n+1} }[/math]
For every multiindexThe integral formula
f ∈ A(D), every point z ∈ D and every multiindex α, the following integral representation formula holds [math]\displaystyle{ \partial^\alpha f(z) = \int_{\partial D} f(\zeta)\omega_\alpha(\zeta,z). }[/math]
For every functionSee also
Notes
- ↑ For a brief historical sketch, see the "historical section" of the present entry.
- ↑ Partial derivatives of a holomorphic function of several complex variables are defined as partial derivatives respect to its complex arguments, i.e. as Wirtinger derivatives.
- ↑ See (Aizenberg Yuzhakov), (Kytmanov 1995), (Kytmanov Myslivets) and (Martinelli 1984).
- ↑ As remarked in (Kytmanov 1995) and (Kytmanov Myslivets).
- ↑ As remarked by (Aizenberg Yuzhakov).
- ↑ See the remarks by (Aizenberg Yuzhakov) and (Martinelli 1984).
- ↑ As correctly stated by (Aizenberg Yuzhakov) and (Kytmanov 1995). (Martinelli 1984) cites only the later work (Andreotti Norguet) which, however, contains the full proof of the formula.
- ↑ See (Martinelli 1984).
- ↑ According to (Aizenberg Yuzhakov), (Kytmanov 1995), (Kytmanov Myslivets) and (Martinelli 1984), who does not describe his results in this reference, but merely mentions them.
- ↑ See (Aizenberg 1993), (Aizenberg Yuzhakov), the references cited in those sources and the brief remarks by (Kytmanov 1995) and by (Kytmanov Myslivets): each of these works gives Aizenberg's proof.
- ↑ Compare, for example, the original ones by Andreotti and Norguet (1964, p. 780, 1966, pp. 207–208) and those used by (Aizenberg Yuzhakov), also briefly described in reference (Aizenberg 1993).
References
- Aizenberg, Lev (1993) [1990], Carleman's Formulas in Complex Analysis. Theory and applications, Mathematics and Its Applications, 244 (2nd ed.), Dordrecht–Boston–London: Kluwer Academic Publishers, pp. xx+299, doi:10.1007/978-94-011-1596-4, ISBN 0-7923-2121-9, https://books.google.com/books?id=vuuNyOnUjG0C, revised translation of the 1990 Russian original.
- Aizenberg, L. A.; Yuzhakov, A. P. (1983) [1979], Integral Representations and Residues in Multidimensional Complex Analysis, Translations of Mathematical Monographs, 58, Providence R.I.: American Mathematical Society, pp. x+283, ISBN 0-8218-4511-X, https://books.google.com/books?id=2ZWsf6ufee8C.
- Andreotti, Aldo; Norguet, François (20 January 1964), "Problème de Levi pour les classes de cohomologie" (in French), Comptes rendus hebdomadaires des séances de l'Académie des Sciences 258 (Première partie): 778–781, http://gallica.bnf.fr/ark:/12148/bpt6k40102/f824.image.
- Andreotti, Aldo; Norguet, François (1966), "Problème de Levi et convexité holomorphe pour les classes de cohomologie" (in French), Annali della Scuola Normale Superiore di Pisa, Classe di Scienze, Serie III 20 (2): 197–241, http://www.numdam.org/item?id=ASNSP_1966_3_20_2_197_0.
- Berenstein, Carlos A.; Gay, Roger; Vidras, Alekos; Yger, Alain (1993), Residue currents and Bezout identities, Progress in Mathematics, 114, Basel–Berlin–Boston: Birkhäuser Verlag, pp. xi+158, doi:10.1007/978-3-0348-8560-7, ISBN 3-7643-2945-9 ISBN:0-8176-2945-9, ISBN:978-3-0348-8560-7.
- Kytmanov, Alexander M. (1995) [1992], The Bochner–Martinelli integral and its applications, Birkhäuser Verlag, pp. xii+305, ISBN 978-3-7643-5240-0, https://books.google.com/books?isbn=376435240X.
- Kytmanov, Alexander M.; Myslivets, Simona G. (2010), Интегральные представления и их приложения в многомерном комплексном анализе, Красноярск: СФУ, pp. 389, ISBN 978-5-7638-1990-8, archived from the original on 2014-03-23, https://web.archive.org/web/20140323020317/http://www.eastview.com/russian/books/product.asp?SKU=930345B&f_locale=_CYR&active_tab=1.
- Kytmanov, Alexander M.; Myslivets, Simona G. (2015), Multidimensional integral representations. Problems of analytic continuation, Cham–Heidelberg–New York–Dordrecht–London: Springer Verlag, pp. xiii+225, doi:10.1007/978-3-319-21659-1, ISBN 978-3-319-21658-4, https://books.google.com/books?id=jpWKCgAAQBAJ, ISBN:978-3-319-21659-1 (ebook).
- Martinelli, Enzo (1975), "Sopra una formula di Andreotti–Norguet" (in Italian), Bollettino dell'Unione Matematica Italiana, IV Serie 11 (3, Supplemento): 455–457. Collection of articles dedicated to Giovanni Sansone on the occasion of his eighty-fifth birthday.
- Martinelli, Enzo (1984) (in Italian), Introduzione elementare alla teoria delle funzioni di variabili complesse con particolare riguardo alle rappresentazioni integrali, Contributi del Centro Linceo Interdisciplinare di Scienze Matematiche e Loro Applicazioni, 67, Rome: Accademia Nazionale dei Lincei, pp. 236+II, http://www.lincei.it/pubblicazioni/catalogo/volume.php?lg=e&rid=33233, retrieved 2014-03-22. The notes form a course, published by the Accademia Nazionale dei Lincei, held by Martinelli during his stay at the Accademia as "Professore Linceo".
- Sorani, Giuliano (1965), "Sulla rappresentazione delle funzioni olomorfe" (in Italian), Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie VIII 39 (3-4): 161-166, http://www.bdim.eu/item?id=RLINA_1965_8_39_3-4_161_0, :
Original source: https://en.wikipedia.org/wiki/Andreotti–Norguet formula.
Read more |