Enumerations of specific permutation classes

From HandWiki
Revision as of 19:27, 8 February 2024 by MainAI6 (talk | contribs) (correction)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

In the study of permutation patterns, there has been considerable interest in enumerating specific permutation classes, especially those with relatively few basis elements. This area of study has turned up unexpected instances of Wilf equivalence, where two seemingly-unrelated permutation classes have the same numbers of permutations of each length.

Classes avoiding one pattern of length 3

There are two symmetry classes and a single Wilf class for single permutations of length three.

β sequence enumerating Avn(β) OEIS type of sequence exact enumeration reference

123
231

1, 2, 5, 14, 42, 132, 429, 1430, ... A000108 algebraic (nonrational) g.f.
Catalan numbers
(MacMahon 1916)
(Knuth 1968)

Classes avoiding one pattern of length 4

There are seven symmetry classes and three Wilf classes for single permutations of length four.

β sequence enumerating Avn(β) OEIS type of sequence exact enumeration reference

1342
2413

1, 2, 6, 23, 103, 512, 2740, 15485, ... A022558 algebraic (nonrational) g.f. (Bóna 1997)

1234
1243
1432
2143

1, 2, 6, 23, 103, 513, 2761, 15767, ... A005802 holonomic (nonalgebraic) g.f. (Gessel 1990)
1324 1, 2, 6, 23, 103, 513, 2762, 15793, ... A061552

No non-recursive formula counting 1324-avoiding permutations is known. A recursive formula was given by (Marinov Radoičić). A more efficient algorithm using functional equations was given by (Johansson Nakamura), which was enhanced by (Conway Guttmann), and then further enhanced by (Conway Guttmann) who give the first 50 terms of the enumeration. (Bevan Brignall) have provided lower and upper bounds for the growth of this class.

Classes avoiding two patterns of length 3

There are five symmetry classes and three Wilf classes, all of which were enumerated in (Simion Schmidt).

B sequence enumerating Avn(B) OEIS type of sequence
123, 321 1, 2, 4, 4, 0, 0, 0, 0, ... n/a finite
213, 321 1, 2, 4, 7, 11, 16, 22, 29, ... A000124 polynomial, [math]\displaystyle{ {n\choose 2}+1 }[/math]

231, 321
132, 312
231, 312

1, 2, 4, 8, 16, 32, 64, 128, ... A000079 rational g.f., [math]\displaystyle{ 2^{n-1} }[/math]

Classes avoiding one pattern of length 3 and one of length 4

There are eighteen symmetry classes and nine Wilf classes, all of which have been enumerated. For these results, see (Atkinson 1999) or (West 1996).

B sequence enumerating Avn(B) OEIS type of sequence
321, 1234 1, 2, 5, 13, 25, 25, 0, 0, ... n/a finite
321, 2134 1, 2, 5, 13, 30, 61, 112, 190, ... A116699 polynomial
132, 4321 1, 2, 5, 13, 31, 66, 127, 225, ... A116701 polynomial
321, 1324 1, 2, 5, 13, 32, 72, 148, 281, ... A179257 polynomial
321, 1342 1, 2, 5, 13, 32, 74, 163, 347, ... A116702 rational g.f.
321, 2143 1, 2, 5, 13, 33, 80, 185, 411, ... A088921 rational g.f.

132, 4312
132, 4231

1, 2, 5, 13, 33, 81, 193, 449, ... A005183 rational g.f.
132, 3214 1, 2, 5, 13, 33, 82, 202, 497, ... A116703 rational g.f.

321, 2341
321, 3412
321, 3142
132, 1234
132, 4213
132, 4123
132, 3124
132, 2134
132, 3412

1, 2, 5, 13, 34, 89, 233, 610, ... A001519 rational g.f.,
alternate Fibonacci numbers

Classes avoiding two patterns of length 4

Heatmaps of classes avoiding two patterns of length 4.

There are 56 symmetry classes and 38 Wilf equivalence classes. Only 3 of these remain unenumerated, and their generating functions are conjectured not to satisfy any algebraic differential equation (ADE) by (Albert Homberger); in particular, their conjecture would imply that these generating functions are not D-finite.

Heatmaps of each of the non-finite classes are shown on the right. The lexicographically minimal symmetry is used for each class, and the classes are ordered in lexicographical order. To create each heatmap, one million permutations of length 300 were sampled uniformly at random from the class. The color of the point [math]\displaystyle{ (i,j) }[/math] represents how many permutations have value [math]\displaystyle{ j }[/math] at index [math]\displaystyle{ i }[/math]. Higher resolution versions can be obtained at PermPal

B sequence enumerating Avn(B) OEIS type of sequence exact enumeration reference
4321, 1234 1, 2, 6, 22, 86, 306, 882, 1764, ... A206736 finite Erdős–Szekeres theorem
4312, 1234 1, 2, 6, 22, 86, 321, 1085, 3266, ... A116705 polynomial (Kremer Shiu)
4321, 3124 1, 2, 6, 22, 86, 330, 1198, 4087, ... A116708 rational g.f. (Kremer Shiu)
4312, 2134 1, 2, 6, 22, 86, 330, 1206, 4174, ... A116706 rational g.f. (Kremer Shiu)
4321, 1324 1, 2, 6, 22, 86, 332, 1217, 4140, ... A165524 polynomial (Vatter 2012)
4321, 2143 1, 2, 6, 22, 86, 333, 1235, 4339, ... A165525 rational g.f. (Albert Atkinson)
4312, 1324 1, 2, 6, 22, 86, 335, 1266, 4598, ... A165526 rational g.f. (Albert Atkinson)
4231, 2143 1, 2, 6, 22, 86, 335, 1271, 4680, ... A165527 rational g.f. (Albert Atkinson)
4231, 1324 1, 2, 6, 22, 86, 336, 1282, 4758, ... A165528 rational g.f. (Albert Atkinson)
4213, 2341 1, 2, 6, 22, 86, 336, 1290, 4870, ... A116709 rational g.f. (Kremer Shiu)
4312, 2143 1, 2, 6, 22, 86, 337, 1295, 4854, ... A165529 rational g.f. (Albert Atkinson)
4213, 1243 1, 2, 6, 22, 86, 337, 1299, 4910, ... A116710 rational g.f. (Kremer Shiu)
4321, 3142 1, 2, 6, 22, 86, 338, 1314, 5046, ... A165530 rational g.f. (Vatter 2012)
4213, 1342 1, 2, 6, 22, 86, 338, 1318, 5106, ... A116707 rational g.f. (Kremer Shiu)
4312, 2341 1, 2, 6, 22, 86, 338, 1318, 5110, ... A116704 rational g.f. (Kremer Shiu)
3412, 2143 1, 2, 6, 22, 86, 340, 1340, 5254, ... A029759 algebraic (nonrational) g.f. (Atkinson 1998)

4321, 4123
4321, 3412
4123, 3214
4123, 2143

1, 2, 6, 22, 86, 342, 1366, 5462, ... A047849 rational g.f. (Kremer Shiu)
4123, 2341 1, 2, 6, 22, 87, 348, 1374, 5335, ... A165531 algebraic (nonrational) g.f. (Atkinson Sagan)
4231, 3214 1, 2, 6, 22, 87, 352, 1428, 5768, ... A165532 algebraic (nonrational) g.f. (Miner 2016)
4213, 1432 1, 2, 6, 22, 87, 352, 1434, 5861, ... A165533 algebraic (nonrational) g.f. (Miner 2016)

4312, 3421
4213, 2431

1, 2, 6, 22, 87, 354, 1459, 6056, ... A164651 algebraic (nonrational) g.f. (Le 2005) established the Wilf-equivalence;
(Callan 2013a) determined the enumeration.
4312, 3124 1, 2, 6, 22, 88, 363, 1507, 6241, ... A165534 algebraic (nonrational) g.f. (Pantone 2017)
4231, 3124 1, 2, 6, 22, 88, 363, 1508, 6255, ... A165535 algebraic (nonrational) g.f. (Albert Atkinson)
4312, 3214 1, 2, 6, 22, 88, 365, 1540, 6568, ... A165536 algebraic (nonrational) g.f. (Miner 2016)

4231, 3412
4231, 3142
4213, 3241
4213, 3124
4213, 2314

1, 2, 6, 22, 88, 366, 1552, 6652, ... A032351 algebraic (nonrational) g.f. (Bóna 1998)
4213, 2143 1, 2, 6, 22, 88, 366, 1556, 6720, ... A165537 algebraic (nonrational) g.f. (Bevan 2016b)
4312, 3142 1, 2, 6, 22, 88, 367, 1568, 6810, ... A165538 algebraic (nonrational) g.f. (Albert Atkinson)
4213, 3421 1, 2, 6, 22, 88, 367, 1571, 6861, ... A165539 algebraic (nonrational) g.f. (Bevan 2016a)

4213, 3412
4123, 3142

1, 2, 6, 22, 88, 368, 1584, 6968, ... A109033 algebraic (nonrational) g.f. (Le 2005)
4321, 3214 1, 2, 6, 22, 89, 376, 1611, 6901, ... A165540 algebraic (nonrational) g.f. (Bevan 2016a)
4213, 3142 1, 2, 6, 22, 89, 379, 1664, 7460, ... A165541 algebraic (nonrational) g.f. (Albert Atkinson)
4231, 4123 1, 2, 6, 22, 89, 380, 1677, 7566, ... A165542 conjectured to not satisfy any ADE, see (Albert Homberger)
4321, 4213 1, 2, 6, 22, 89, 380, 1678, 7584, ... A165543 algebraic (nonrational) g.f. (Callan 2013b); see also (Bloom Vatter)
4123, 3412 1, 2, 6, 22, 89, 381, 1696, 7781, ... A165544 algebraic (nonrational) g.f. (Miner Pantone)
4312, 4123 1, 2, 6, 22, 89, 382, 1711, 7922, ... A165545 conjectured to not satisfy any ADE, see (Albert Homberger)

4321, 4312
4312, 4231
4312, 4213
4312, 3412
4231, 4213
4213, 4132
4213, 4123
4213, 2413
4213, 3214
3142, 2413

1, 2, 6, 22, 90, 394, 1806, 8558, ... A006318 Schröder numbers
algebraic (nonrational) g.f.
(Kremer 2000), (Kremer 2003)
3412, 2413 1, 2, 6, 22, 90, 395, 1823, 8741, ... A165546 algebraic (nonrational) g.f. (Miner Pantone)
4321, 4231 1, 2, 6, 22, 90, 396, 1837, 8864, ... A053617 conjectured to not satisfy any ADE, see (Albert Homberger)

See also

References

External links

The Database of Permutation Pattern Avoidance, maintained by Bridget Tenner, contains details of the enumeration of many other permutation classes with relatively few basis elements.