Biology:NLN (gene)

From HandWiki
Revision as of 16:14, 10 February 2024 by John Marlo (talk | contribs) (add)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Short description: Protein-coding gene in the species Homo sapiens


A representation of the 3D structure of the protein myoglobin showing turquoise α-helices.
Generic protein structure example

Neurolysin, mitochondrial is a protein that in humans is encoded by the NLN gene.[1][2] It is a 78-kDa enzyme, widely distributed in mammalian tissues and found in various subcellular locations that vary with cell type.[3] Neurolysin exemplifies the ability of neuropeptidases to target various cleavage site sequences by hydrolyzing them in vitro,[4][5] and metabolism of neurotensin is the most important role of neurolysin in vivo.[6] Neurolysin has also been implicated in pain control,[7][8][9] blood pressure regulation,[10][11] sepsis,[12] reproduction,[13][14] cancer biology[15] pathogenesis of stroke,[16] and glucose metabolism.[17]

Structure

Gene

The NLN gene lies on the chromosome location of 5q12.3 and consists of 14 exons.

Protein

Neurolysin, with 704 amino acid residues, is a zinc metalloendopeptidase with a conserved HEXXH motif. It has an overall prolate ellipsoid shape, with a deep narrow channel dividing it into two roughly equal domains.[18] The catalytic site is contained within a thermolysin-like region found in many metallopeptidases and located in the domain near the floor of the channel.[6][19]

Function

Neurolysin hydrolyzes only peptides containing 5-17 amino acids by cleaving at a limited set of sites.[18][20][21] The specificity of neurolysin for small bioactive peptides is due to the presence of large structural elements erected over its active site region that allow substrates access only through a deep narrow channel.[22] In vitro, neurolysin exemplifies the ability of some neuropeptidases to target diverse cleavage site sequences.[4][5] In vivo, their most established role is cleaving neurotensin between its 10th and 11th residues to produce inactive fragments and it has been recently identified as a non-AT1-non-AT2 angiotensin-binding site, with function pertaining to the rennin-angiotensin system.[6][23][24] Neurotensin is involved in many processes including mast cell degranulation and regulation of central nervous system dopaminergic and cholinergic circuits.[25][26][27] A lower level of neurotensin is associated with schizophrenia,[28] and it is implicated in cardiovascular disorders, addiction, Huntington disease and Parkinson disease.[26][29][30][31] Neurotensin is also one of the most potent blockers of pain perception.[32]

Clinical significance

Metabolism of neurotensin is the most important role of neurolysin in vivo and has been identified as a non-AT1-non-AT2 angiotensin-binding site.[6][23][24] Neurotensin is involved in many processes including mast cell degranullation and regulation of central nervous system dopaminergic and cholinergic circuits.[25][26][27] Neurolysin has also been implicated in pain control,[7][8][9] blood pressure regulation,[10][11] sepsis,[12] reproduction,[13][14] cancer biology,[15] pathogenesis of stroke,[16] and glucose metabolism.[17] Inhibition of neurolysin has been shown to produce neurotensin-induced analgesia in mice,[33] and control of neurotensin levels by neurolysin may serve as a potential target for antipsychotic therapies.

Interactions

This protein is known to interact with:

References

  1. "Prediction of the coding sequences of unidentified human genes. XV. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro". DNA Research 6 (5): 337–45. October 1999. doi:10.1093/dnares/6.5.337. PMID 10574462. 
  2. "Entrez Gene: NLN neurolysin (metallopeptidase M3 family)". https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=57486. 
  3. "Thimet oligopeptidase and oligopeptidase M or neurolysin". Methods in Enzymology 248: 529–56. 1995. doi:10.1016/0076-6879(95)48034-x. PMID 7674943. 
  4. 4.0 4.1 "Selective neurotensin-derived internally quenched fluorogenic substrates for neurolysin (EC 3.4.24.16): comparison with thimet oligopeptidase (EC 3.4.24.15) and neprilysin (EC 3.4.24.11)". Analytical Biochemistry 292 (2): 257–65. May 2001. doi:10.1006/abio.2001.5083. PMID 11355859. 
  5. 5.0 5.1 "Neuropeptide specificity and inhibition of recombinant isoforms of the endopeptidase 3.4.24.16 family: comparison with the related recombinant endopeptidase 3.4.24.15". Biochemical and Biophysical Research Communications 250 (1): 5–11. September 1998. doi:10.1006/bbrc.1998.8941. PMID 9735321. 
  6. 6.0 6.1 6.2 6.3 6.4 "Allosteric inhibition of the neuropeptidase neurolysin". The Journal of Biological Chemistry 289 (51): 35605–19. December 2014. doi:10.1074/jbc.M114.620930. PMID 25378390. 
  7. 7.0 7.1 "Modulation of bradykinin signaling by EP24.15 and EP24.16 in cultured trigeminal ganglia". Journal of Neurochemistry 97 (1): 13–21. April 2006. doi:10.1111/j.1471-4159.2006.03706.x. PMID 16515556. 
  8. 8.0 8.1 "Synthesis and analgesic effects of N-[3-[(hydroxyamino) carbonyl]-1-oxo-2(R)-benzylpropyl]-L-isoleucyl-L-leucine, a new potent inhibitor of multiple neurotensin/neuromedin N degrading enzymes". Journal of Medicinal Chemistry 36 (10): 1369–79. May 1993. doi:10.1021/jm00062a009. PMID 8496905. 
  9. 9.0 9.1 "Role of endopeptidase 3.4.24.16 in the catabolism of neurotensin, in vivo, in the vascularly perfused dog ileum". British Journal of Pharmacology 112 (1): 127–32. May 1994. doi:10.1111/j.1476-5381.1994.tb13041.x. PMID 8032633. 
  10. 10.0 10.1 "Carboxypeptidase B and other kininases of the rat coronary and mesenteric arterial bed perfusates". American Journal of Physiology. Heart and Circulatory Physiology 293 (6): H3550-7. December 2007. doi:10.1152/ajpheart.00784.2007. PMID 17906107. 
  11. 11.0 11.1 "Hypotensive effects of hemopressin and bradykinin in rabbits, rats and mice. A comparative study". Peptides 26 (8): 1317–22. August 2005. doi:10.1016/j.peptides.2005.03.026. PMID 16042973. 
  12. 12.0 12.1 12.2 "Neurotensin increases mortality and mast cells reduce neurotensin levels in a mouse model of sepsis". Nature Medicine 14 (4): 392–8. April 2008. doi:10.1038/nm1738. PMID 18376408. 
  13. 13.0 13.1 "Endopeptidase 24-16 in murines: tissue distribution, cerebral regionalization, and ontogeny". Journal of Neurochemistry 59 (5): 1862–7. November 1992. doi:10.1111/j.1471-4159.1992.tb11021.x. PMID 1402928. 
  14. 14.0 14.1 "Soluble metalloendopeptidases and neuroendocrine signaling". Endocrine Reviews 23 (5): 647–64. October 2002. doi:10.1210/er.2001-0032. PMID 12372844. 
  15. 15.0 15.1 "Characterization of thimet oligopeptidase and neurolysin activities in B16F10-Nex2 tumor cells and their involvement in angiogenesis and tumor growth". Molecular Cancer 6: 44. 9 July 2007. doi:10.1186/1476-4598-6-44. PMID 17620116. 
  16. 16.0 16.1 "Functional up-regulation of endopeptidase neurolysin during post-acute and early recovery phases of experimental stroke in mouse brain". Journal of Neurochemistry 129 (1): 179–89. April 2014. doi:10.1111/jnc.12513. PMID 24164478. 
  17. 17.0 17.1 "Neurolysin knockout mice generation and initial phenotype characterization". The Journal of Biological Chemistry 289 (22): 15426–40. May 2014. doi:10.1074/jbc.M113.539148. PMID 24719317. 
  18. 18.0 18.1 "Structure of neurolysin reveals a deep channel that limits substrate access". Proceedings of the National Academy of Sciences of the United States of America 98 (6): 3127–32. March 2001. doi:10.1073/pnas.051633198. PMID 11248043. Bibcode2001PNAS...98.3127B. 
  19. "The conformation of thermolysin". The Journal of Biological Chemistry 249 (24): 8030–44. December 1974. doi:10.1016/S0021-9258(19)42067-X. PMID 4214815. 
  20. "Mapping sequence differences between thimet oligopeptidase and neurolysin implicates key residues in substrate recognition". Protein Science 11 (9): 2237–46. September 2002. doi:10.1110/ps.0216302. PMID 12192079. 
  21. "Occurrence and activation of Ca2+/calmodulin-dependent protein kinase II and its endogenous substrates in bovine adrenal medullary cells". Molecular Pharmacology 46 (3): 423–30. September 1994. PMID 7935321. 
  22. "Novel natural peptide substrates for endopeptidase 24.15, neurolysin, and angiotensin-converting enzyme". The Journal of Biological Chemistry 278 (10): 8547–55. March 2003. doi:10.1074/jbc.M212030200. PMID 12500972. 
  23. 23.0 23.1 "Pharmacological characterization of a novel non-AT1, non-AT2 angiotensin binding site identified as neurolysin". Endocrine 44 (2): 525–31. October 2013. doi:10.1007/s12020-013-9898-x. PMID 23412923. 
  24. 24.0 24.1 "Identification of membrane-bound variant of metalloendopeptidase neurolysin (EC 3.4.24.16) as the non-angiotensin type 1 (non-AT1), non-AT2 angiotensin binding site". The Journal of Biological Chemistry 287 (1): 114–22. January 2012. doi:10.1074/jbc.M111.273052. PMID 22039052. 
  25. 25.0 25.1 "Neurotensin mediates rat bladder mast cell degranulation triggered by acute psychological stress". Urology 53 (5): 1035–40. May 1999. doi:10.1016/s0090-4295(98)00627-x. PMID 10223502. 
  26. 26.0 26.1 26.2 "Interaction between neurotensin and dopamine in the brain. Morphofunctional and clinical evidence". Annals of the New York Academy of Sciences 668: 217–31. 1992. doi:10.1111/j.1749-6632.1992.tb27352.x. PMID 1361114. 
  27. 27.0 27.1 "Neurotensin and substance P inhibit low- and high-voltage-activated Ca2+ channels in cultured newborn rat nucleus basalis neurons". Journal of Neurophysiology 78 (3): 1341–52. September 1997. doi:10.1152/jn.1997.78.3.1341. PMID 9310425. 
  28. "CSF neurotensin concentrations and antipsychotic treatment in schizophrenia and schizoaffective disorder". The American Journal of Psychiatry 154 (7): 1019–21. July 1997. doi:10.1176/ajp.154.7.1019. PMID 9210757. 
  29. "Effects of neurotensin and neuropeptide Y on coronary circulation and myocardial function in dogs". The American Journal of Physiology 264 (4 Pt 2): H1062-8. April 1993. doi:10.1152/ajpheart.1993.264.4.H1062. PMID 8476083. 
  30. "A neurotensin receptor antagonist inhibits acute immobilization stress-induced cardiac mast cell degranulation, a corticotropin-releasing hormone-dependent process". The Journal of Pharmacology and Experimental Therapeutics 287 (1): 307–14. October 1998. PMID 9765351. 
  31. "Neurobiologic basis of nicotine addiction and psychostimulant abuse: a role for neurotensin?". The Psychiatric Clinics of North America 28 (3): 737–51, 746. September 2005. doi:10.1016/j.psc.2005.05.001. PMID 16122577. 
  32. "The effects of neuropeptides on discrete-trial conditioned avoidance responding". Brain Research 237 (1): 183–92. April 1982. doi:10.1016/0006-8993(82)90566-2. PMID 6176291. 
  33. "Effect of a novel selective and potent phosphinic peptide inhibitor of endopeptidase 3.4.24.16 on neurotensin-induced analgesia and neuronal inactivation". British Journal of Pharmacology 121 (4): 705–10. June 1997. doi:10.1038/sj.bjp.0701182. PMID 9208137. 
  34. "Modulation of cytokine release and gene expression by the immunosuppressive domain of gp41 of HIV-1". PLOS ONE 8 (1): e55199. 2013. doi:10.1371/journal.pone.0055199. PMID 23383108. Bibcode2013PLoSO...855199D. 

Further reading

  • "Construction of expression-ready cDNA clones for KIAA genes: manual curation of 330 KIAA cDNA clones". DNA Research 9 (3): 99–106. June 2002. doi:10.1093/dnares/9.3.99. PMID 12168954. 
  • "Characterization of a mitochondrial metallopeptidase reveals neurolysin as a homologue of thimet oligopeptidase". The Journal of Biological Chemistry 270 (5): 2092–8. February 1995. doi:10.1074/jbc.270.5.2092. PMID 7836437. 
  • "Purification and characterization of human endopeptidase 3.4.24.16. Comparison with the porcine counterpart indicates a unique cleavage site on neurotensin". Brain Research 709 (1): 51–8. February 1996. doi:10.1016/0006-8993(95)01260-5. PMID 8869556. 
  • "Stably transfected human cells overexpressing rat brain endopeptidase 3.4.24.16: biochemical characterization of the activity and expression of soluble and membrane-associated counterparts". Journal of Neurochemistry 68 (2): 837–45. February 1997. doi:10.1046/j.1471-4159.1997.68020837.x. PMID 9003076. 
  • "Characterization and localization of mitochondrial oligopeptidase (MOP) (EC 3.4.24.16) activity in the human cervical adenocarcinoma cell line HeLa". Journal of Cellular Biochemistry 66 (3): 297–308. September 1997. doi:10.1002/(SICI)1097-4644(19970901)66:3<297::AID-JCB3>3.0.CO;2-K. PMID 9257187. 
  • "Neuropeptide specificity and inhibition of recombinant isoforms of the endopeptidase 3.4.24.16 family: comparison with the related recombinant endopeptidase 3.4.24.15". Biochemical and Biophysical Research Communications 250 (1): 5–11. September 1998. doi:10.1006/bbrc.1998.8941. PMID 9735321. 
  • "Confocal microscopy reveals thimet oligopeptidase (EC 3.4.24.15) and neurolysin (EC 3.4.24.16) in the classical secretory pathway". DNA and Cell Biology 18 (4): 323–31. April 1999. doi:10.1089/104454999315385. PMID 10235115. 
  • "Bradykinin analogues with beta-amino acid substitutions reveal subtle differences in substrate specificity between the endopeptidases EC 3.4.24.15 and EC 3.4.24.16". Journal of Peptide Science 6 (9): 440–5. September 2000. doi:10.1002/1099-1387(200009)6:9<440::AID-PSC280>3.0.CO;2-K. PMID 11016880. 
  • "Metalloendopeptidases EC 3.4.24.15/16 regulate bradykinin activity in the cerebral microvasculature". American Journal of Physiology. Heart and Circulatory Physiology 284 (6): H1942-8. June 2003. doi:10.1152/ajpheart.00948.2002. PMID 12586639. 
  • "Endopeptidases 3.4.24.15 and 24.16 in endothelial cells: potential role in vasoactive peptide metabolism". American Journal of Physiology. Heart and Circulatory Physiology 284 (6): H1978-84. June 2003. doi:10.1152/ajpheart.01116.2002. PMID 12609826. 
  • "Swapping the substrate specificities of the neuropeptidases neurolysin and thimet oligopeptidase". The Journal of Biological Chemistry 282 (13): 9722–32. March 2007. doi:10.1074/jbc.M609897200. PMID 17251185.