Software:CuPy
Original author(s) | Seiya Tokui |
---|---|
Developer(s) | Community, Preferred Networks, Inc. |
Initial release | September 2, 2015[1] | .
Stable release | |
Preview release | |
Repository | github |
Written in | Python, Cython, CUDA |
Operating system | Linux, Windows |
Platform | Cross-platform |
Type | Numerical analysis |
License | MIT |
Website | cupy |
CuPy is an open source library for GPU-accelerated computing with Python programming language, providing support for multi-dimensional arrays, sparse matrices, and a variety of numerical algorithms implemented on top of them.[3] CuPy shares the same API set as NumPy and SciPy, allowing it to be a drop-in replacement to run NumPy/SciPy code on GPU. CuPy supports NVIDIA CUDA GPU platform, and AMD ROCm GPU platform starting in v9.0.[4][5]
CuPy has been initially developed as a backend of Chainer deep learning framework, and later established as an independent project in 2017.[6]
CuPy is a part of the NumPy ecosystem array libraries[7] and is widely adopted to utilize GPU with Python,[8] especially in high-performance computing environments such as Summit,[9] Perlmutter,[10] EULER,[11] and ABCI.[12]
CuPy is a NumFOCUS affiliated project.[13]
Features
CuPy implements NumPy/SciPy-compatible APIs, as well as features to write user-defined GPU kernels or access low-level APIs.[14][15]
NumPy-compatible APIs
The same set of APIs defined in the NumPy package (numpy.*
) are available under cupy.*
package.
- Multi-dimensional array (
cupy.ndarray
) for boolean, integer, float, and complex data types - Module-level functions
- Linear algebra functions
- Fast Fourier transform
- Random number generator
SciPy-compatible APIs
The same set of APIs defined in the SciPy package (scipy.*
) are available under cupyx.scipy.*
package.
- Sparse matrices (
cupyx.scipy.sparse.*_matrix
) of CSR, COO, CSC, and DIA format - Discrete Fourier transform
- Advanced linear algebra
- Multidimensional image processing
- Sparse linear algebra
- Special functions
- Signal processing
- Statistical functions
User-defined GPU kernels
- Kernel templates for element-wise and reduction operations
- Raw kernel (CUDA C/C++)
- Just-in-time transpiler (JIT)
- Kernel fusion
Distributed computing
- Distributed communication package (
cupyx.distributed
), providing collective and peer-to-peer primitives
Low-level CUDA features
- Stream and event
- Memory pool
- Profiler
- Host API binding
- CUDA Python support[16]
Interoperability
- DLPack[17]
- CUDA Array Interface[18]
- NEP 13 (
__array_ufunc__
)[19] - NEP 18 (
__array_function__
)[20][21] - Array API Standard[22][23]
Examples
Array creation
>>> import cupy as cp >>> x = cp.array([1, 2, 3]) >>> x array([1, 2, 3]) >>> y = cp.arange(10) >>> y array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
Basic operations
>>> import cupy as cp >>> x = cp.arange(12).reshape(3, 4).astype(cp.float32) >>> x array([[ 0., 1., 2., 3.], [ 4., 5., 6., 7.], [ 8., 9., 10., 11.]], dtype=float32) >>> x.sum(axis=1) array([ 6., 22., 38.], dtype=float32)
Raw CUDA C/C++ kernel
>>> import cupy as cp >>> kern = cp.RawKernel(r''' ... extern "C" __global__ ... void multiply_elemwise(const float* in1, const float* in2, float* out) { ... int tid = blockDim.x * blockIdx.x + threadIdx.x; ... out[tid] = in1[tid] * in2[tid]; ... } ... ''', 'multiply_elemwise') >>> in1 = cp.arange(16, dtype=cp.float32).reshape(4, 4) >>> in2 = cp.arange(16, dtype=cp.float32).reshape(4, 4) >>> out = cp.zeros((4, 4), dtype=cp.float32) >>> kern((4,), (4,), (in1, in2, out)) # grid, block and arguments >>> out array([[ 0., 1., 4., 9.], [ 16., 25., 36., 49.], [ 64., 81., 100., 121.], [144., 169., 196., 225.]], dtype=float32)
Applications
See also
References
- ↑ "Release v1.3.0 – chainer/chainer". https://github.com/chainer/chainer/releases/v1.3.0.
- ↑ 2.0 2.1 2.2 2.3 "Releases – cupy/cupy". https://github.com/cupy/cupy/releases.
- ↑ Okuta, Ryosuke; Unno, Yuya; Nishino, Daisuke; Hido, Shohei; Loomis, Crissman (2017). "CuPy: A NumPy-Compatible Library for NVIDIA GPU Calculations". Proceedings of Workshop on Machine Learning Systems (LearningSys) in The Thirty-first Annual Conference on Neural Information Processing Systems (NIPS). http://learningsys.org/nips17/assets/papers/paper_16.pdf.
- ↑ "CuPy 9.0 Brings AMD GPU Support To This Numpy-Compatible Library - Phoronix". 29 April 2021. https://www.phoronix.com/scan.php?page=news_item&px=CuPy-9.0-Released.
- ↑ "AMD Leads High Performance Computing Towards Exascale and Beyond". 28 June 2021. https://ir.amd.com/news-events/press-releases/detail/1012/amd-leads-high-performance-computing-towards-exascale-and. "Most recently, CuPy, an open-source array library with Python, has expanded its traditional GPU support with the introduction of version 9.0 that now offers support for the ROCm stack for GPU-accelerated computing."
- ↑ "Preferred Networks released Version 2 of Chainer, an Open Source framework for Deep Learning - Preferred Networks, Inc.". 2 June 2017. https://www.preferred.jp/en/news/pr20170602/.
- ↑ "NumPy". numpy.org. https://numpy.org/.
- ↑ Gorelick, Micha; Ozsvald, Ian (April 2020). High Performance Python: Practical Performant Programming for Humans (2nd ed.). O'Reilly Media, Inc.. p. 190. ISBN 9781492055020.
- ↑ Oak Ridge Leadership Computing Facility. "Installing CuPy". OLCF User Documentation. https://docs.olcf.ornl.gov/software/python/cupy.html.
- ↑ National Energy Research Scientific Computing Center. "Using Python on Perlmutter". NERSC Documentation. https://docs.nersc.gov/development/languages/python/using-python-perlmutter/#cupy.
- ↑ ETH Zurich. "CuPy". ScientificComputing. https://scicomp.ethz.ch/wiki/CuPy.
- ↑ National Institute of Advanced Industrial Science and Technology. "Chainer". ABCI 2.0 User Guide. https://docs.abci.ai/en/apps/chainer/.
- ↑ "Affiliated Projects - NumFOCUS". https://numfocus.org/sponsored-projects/affiliated-projects.
- ↑ "Overview". CuPy documentation. https://docs.cupy.dev/en/latest/overview.html.
- ↑ "Comparison Table". CuPy documentation. https://docs.cupy.dev/en/latest/reference/comparison.html.
- ↑ "CUDA Python | NVIDIA Developer". https://developer.nvidia.com/cuda-python.
- ↑ "Welcome to DLPack's documentation!". DLPack 0.6.0 documentation. https://dmlc.github.io/dlpack/latest/.
- ↑ "CUDA Array Interface (Version 3)". Numba 0.55.2+0.g2298ad618.dirty-py3.7-linux-x86_64.egg documentation. https://numba.readthedocs.io/en/stable/cuda/cuda_array_interface.html.
- ↑ "NEP 13 — A mechanism for overriding Ufuncs — NumPy Enhancement Proposals". numpy.org. https://numpy.org/neps/nep-0013-ufunc-overrides.html.
- ↑ "NEP 18 — A dispatch mechanism for NumPy's high level array functions — NumPy Enhancement Proposals". numpy.org. https://numpy.org/neps/nep-0018-array-function-protocol.html.
- ↑ , Wikidata Q99413970
- ↑ "2021 report - Python Data APIs Consortium". https://data-apis.org/files/2021_annual_report_DataAPIs_Consortium.pdf.
- ↑ "Purpose and scope". Python array API standard 2021.12 documentation. https://data-apis.org/array-api/latest/purpose_and_scope.html.
- ↑ "Install spaCy". spaCy Usage Documentation. https://spacy.io/usage#gpu.
- ↑ Patel, Ankur A.; Arasanipalai, Ajay Uppili (May 2021). Applied Natural Language Processing in the Enterprise (1st ed.). O'Reilly Media, Inc.. p. 68. ISBN 9781492062578.
- ↑ "Python Package Introduction". xgboost 1.6.1 documentation. https://xgboost.readthedocs.io/en/stable/python/python_intro.html#data-interface.
- ↑ "UCBerkeleySETI/turbo_seti: turboSETI -- python based SETI search algorithm.". https://github.com/UCBerkeleySETI/turbo_seti#turbo_seti.
- ↑ "Open GPU Data Science | RAPIDS". https://rapids.ai/.
- ↑ "API Docs". RAPIDS Docs. https://docs.rapids.ai/api.
- ↑ "Efficient Data Sharing between CuPy and RAPIDS". https://medium.com/rapids-ai/using-rapids-memory-manager-with-cupy-8d08fe8f58fa.
- ↑ "10 Minutes to cuDF and CuPy". https://medium.com/rapids-ai/10-minutes-to-cudf-and-cupy-e131cac0439b.
- ↑ Alex, Rogozhnikov (2022). "Einops: Clear and Reliable Tensor Manipulations with Einstein-like Notation". International Conference on Learning Representations. https://openreview.net/forum?id=oapKSVM2bcj.
- ↑ "arogozhnikov/einops: Deep learning operations reinvented (for pytorch, tensorflow, jax and others)". https://github.com/arogozhnikov/einops.
- ↑ Tokui, Seiya; Okuta, Ryosuke; Akiba, Takuya; Niitani, Yusuke; Ogawa, Toru; Saito, Shunta; Suzuki, Shuji; Uenishi, Kota et al. (2019). "Chainer: A Deep Learning Framework for Accelerating the Research Cycle". Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. doi:10.1145/3292500.3330756. https://dl.acm.org/doi/10.1145/3292500.3330756.
External links
Original source: https://en.wikipedia.org/wiki/CuPy.
Read more |