Chemistry:Hydroiodic acid

From HandWiki
Revision as of 00:49, 6 February 2024 by SpringEdit (talk | contribs) (link)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Short description: Aqueous solution of hydrogen iodide
Hydroiodic acid
Space-filling model of hydrogen iodide
Space-filling model of water
The iodide anion
Space-filling model of the hydronium cation
Names
IUPAC name
Iodane[1]
Other names
Hydronium iodide
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
EC Number
  • 233-109-9
RTECS number
  • MW3760000
UNII
Properties
HI(aq)
Molar mass 127.91 g/mol
Appearance colorless liquid
Odor acrid
Density 1.70 g/mL, azeotrope
(57% HI by weight)
Boiling point 127 °C (261 °F; 400 K) 1.03 bar, azeotrope
Aqueous solution
Acidity (pKa) -9.3
Hazards
GHS pictograms GHS05: Corrosive
GHS Signal word Danger
H314
P260, P264, P280, P301+330+331, P303+361+353, P304+340, P305+351+338, P310, P321, P363, P405, P501
NFPA 704 (fire diamond)
Flash point Non-flammable
Related compounds
Other anions
Hydrofluoric acid
Hydrochloric acid
Hydrobromic acid
Related compounds
Hydrogen iodide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references
Tracking categories (test):

Hydroiodic acid (or hydriodic acid) is a colorless and aqueous solution of hydrogen iodide (HI). It is a strong acid, which is ionized completely in an aqueous solution. Concentrated solutions of hydroiodic acid are usually 48% to 57% HI.[2]

An oxidized solution of hydriodic acid.

Reactions

Hydroiodic acid reacts with oxygen in air to give iodine:

4 HI + O2 → 2 H2O + 2 I2

Like other hydrogen halides, hydroiodic acid adds to alkenes to give alkyl iodides. It can also be used as a reducing agent, for example in the reduction of aromatic nitro compounds to anilines.[3]

Cativa process

The Cativa process is a major end use of hydroiodic acid, which serves as a co-catalyst for the production of acetic acid by the carbonylation of methanol.[4][5]

The catalytic cycle of the Cativa process

Illicit uses

Hydroiodic acid is listed as a U.S. Federal DEA List I Chemical, owing to its use as a reducing agent related to the production of methamphetamine from ephedrine or pseudoephedrine (recovered from nasal decongestant pills).[6]

References

  1. Henri A. Favre, ed (2014). Nomenclature of Organic Chemistry: IUPAC Recommendations and Preferred Names 2013. Cambridge: The Royal Society of Chemistry. p. 131. 
  2. Lyday, Phyllis A. (2005). "Ullmann's Encyclopedia of Industrial Chemistry". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. pp. 382–390. doi:10.1002/14356007.a14_381. 
  3. Kumar, J. S. Dileep; Ho, ManKit M.; Toyokuni, Tatsushi (2001). "Simple and chemoselective reduction of aromatic nitro compounds to aromatic amines: reduction with hydriodic acid revisited". Tetrahedron Letters 42 (33): 5601–5603. doi:10.1016/s0040-4039(01)01083-8. 
  4. Jones, J. H. (2000). "The Cativa Process for the Manufacture of Acetic Acid". Platinum Metals Rev. 44 (3): 94–105. http://www.platinummetalsreview.com/pdf/pmr-v44-i3-094-105.pdf. 
  5. Sunley, G. J.; Watson, D. J. (2000). "High productivity methanol carbonylation catalysis using iridium - The Cativa process for the manufacture of acetic acid". Catalysis Today 58 (4): 293–307. doi:10.1016/S0920-5861(00)00263-7. 
  6. Skinner, Harry F. (1990). "Methamphetamine synthesis via hydriodic acid/Red phosphorus reduction of ephedrine". Forensic Science International 48 (2): 123–134. doi:10.1016/0379-0738(90)90104-7. 

External links

nl:Waterstofjodide pl:Kwas jodowodorowy