16,807
From HandWiki
Short description: Natural number
| ||||
---|---|---|---|---|
Cardinal | sixteen thousand eight hundred seven | |||
Ordinal | 16807th (sixteen thousand eight hundred seventh) | |||
Factorization | 75 | |||
Greek numeral | [math]\displaystyle{ \stackrel{\alpha}{\Mu} }[/math]͵Ϛωζ´ | |||
Roman numeral | XVMDCCCVII | |||
Binary | 1000001101001112 | |||
Ternary | 2120011113 | |||
Quaternary | 100122134 | |||
Quinary | 10142125 | |||
Senary | 2054516 | |||
Octal | 406478 | |||
Duodecimal | 988712 | |||
Hexadecimal | 41A716 | |||
Vigesimal | 220720 | |||
Base 36 | CYV36 |
16807 is the natural number following 16806 and preceding 16808.
In mathematics
As a number of the form nn − 2 (16807 = 75), it can be applied in Cayley's formula to count the number of trees with seven labeled nodes.[1]
In other fields
- Several authors have suggested a Lehmer random number generator:[2][3][4]
- [math]\displaystyle{ X_{k+1} = 16807 \cdot X_k~~\bmod~~2147483647 }[/math]
References
- ↑ Sloane, N. J. A., ed. "Sequence A000272 (Number of trees on n labeled nodes: n^(n-2))". OEIS Foundation. https://oeis.org/A000272.
- ↑ Lewis, P.A.W.; Goodman A.S.; Miller J.M. (1969). "A pseudo-random number generator for the system/360". IBM Systems Journal 8 (2): 136–143. doi:10.1147/sj.82.0136.
- ↑ Schrage, Linus (1979). "A More Portable Fortran Random Number Generator". ACM Transactions on Mathematical Software 5 (2): 132–138. doi:10.1145/355826.355828.
- ↑ Park, S.K.; Miller, K.W. (1988). "Random Number Generators: Good Ones Are Hard To Find". Communications of the ACM 31 (10): 1192–1201. doi:10.1145/63039.63042. http://www.firstpr.com.au/dsp/rand31/p1192-park.pdf.
External links
Original source: https://en.wikipedia.org/wiki/16,807.
Read more |