Biology:Azotobacter vinelandii
Azotobacter vinelandii | |
---|---|
Scientific classification | |
Domain: | Bacteria |
Phylum: | Pseudomonadota |
Class: | Gammaproteobacteria |
Order: | Pseudomonadales |
Family: | Pseudomonadaceae |
Genus: | Azotobacter |
Species: | A. vinelandii
|
Binomial name | |
Azotobacter vinelandii Lipman 1903[1]
|
Azotobacter vinelandii is Gram-negative diazotroph that can fix nitrogen while grown aerobically.[2][3] These bacteria are easily cultured and grown.
A. vinelandii is a free-living N2 fixer known to produce many phytohormones and vitamins in soils. It produces fluorescent pyoverdine pigments.[4]
Nitrogenase
The nitrogenase holoenzyme of A. vinelandii has been characterised by X-ray crystallography in both ADP tetrafluoroaluminate-bound[5] and MgATP-bound[6] states. The enzyme possesses molybdenum iron-sulfido cluster cofactors (FeMoco) as active sites, each bearing two pseudocubic iron-sulfido structures.
Applications
It is a genetically tractable system that is used to study nitrogen fixation.
Genetically engineered strains can produce significantly higher amounts of ammonia. Appropriate ammonia emissions can provide crops with the ammonia they need without excess amounts that can pollute lakes and oceans.[7]
A. vinelandii also produces significant amounts of alginate.[8]
Variable ploidy
A. vinelandii can contain up to 80 chromosome copies per cell.[9] However this is only seen in fast growing culture, whereas cultures grown in synthetic minimal media are not polyploid.[10]
References
- ↑ William A. Noyes, ed (1904). Review of American Chemical Research. 10. p. 75.
- ↑ Young, Mark. "Why it is possible to reduce Nitrogen fertilizers by using Azotobacter sp". https://www.explogrow.com/farming-with-microbes/why-reduce-npk-applications-when-using-17-beneficial-microbes-in-this-bio-organic-fertilizer.
- ↑ "Evolution of humic substances from unripe compost during incubation with lignolytic or cellulolytic microorganisms and effects on the lettuce growth promotion mediated by Azotobacter chroococcum". Biol Fertil Soils 24: 59–65. 1997. doi:10.1007/BF01420221.
- ↑ "Characterization of the pyoverdines of Azotobacter vinelandii ATCC 12837 with regard to heterogeneity". Biology of Metals 4 (4): 223–32. 1991. doi:10.1007/bf01141185. PMID 1838001.
- ↑ "Structure of ADP x AIF4(-)-stabilized nitrogenase complex and its implications for signal transduction". Nature 387 (6631): 370–376. 1997. doi:10.1038/387370a0. PMID 9163420.
- ↑ "MgATP-Bound and nucleotide-free structures of a nitrogenase protein complex between the Leu 127 Delta-Fe-protein and the MoFe-protein". Biochemistry 40 (3): 641–650. 2001. doi:10.1021/bi001645e. PMID 11170380.
- ↑ Coxworth, Ben (2022-02-18). "Engineered ammonia-producing bacteria could replace crop fertilizers" (in en-US). https://newatlas.com/science/engineered-ammonia-producing-bacteria-crop-fertilizers/.
- ↑ Clementi, Franceses (1997). "Alginate Production by Azotobacter Vinelandii". Critical Reviews in Biotechnology 17 (4). https://www.tandfonline.com/doi/abs/10.3109/07388559709146618.
- ↑ "Multiple chromosomes of Azotobacter vinelandii". J. Bacteriol. 171 (6): 3133–8. 1989. doi:10.1128/jb.171.6.3133-3138.1989. PMID 2785985.
- ↑ "Changes of ploidy during the Azotobacter vinelandii growth cycle". J. Bacteriol. 176 (13): 3911–9. 1994. doi:10.1128/jb.176.13.3911-3919.1994. PMID 8021173. PMC 205588. http://rua.ua.es/dspace/bitstream/10045/15142/1/JB94.pdf.
External links
- Azotobacter vinelandii Genome Project
- Current research on Azotobacter vinelandii at the Norwich Research Park
- Type strain of Azotobacter vinelandii at BacDive - the Bacterial Diversity Metadatabase
Wikidata ☰ Q2157875 entry
Original source: https://en.wikipedia.org/wiki/Azotobacter vinelandii.
Read more |