Biology:D1–D2 dopamine receptor heteromer
Dopamine receptor D1 | |
---|---|
Identifiers | |
Symbol | DRD1 |
NCBI gene | 1812 |
HGNC | 3020 |
OMIM | 126449 |
RefSeq | NP_000785 |
UniProt | P21728 |
Other data | |
Locus | Chr. 5 q35.2 |
Dopamine receptor D2 | |
---|---|
Identifiers | |
Symbol | DRD2 |
NCBI gene | 1813 |
HGNC | 3023 |
OMIM | 126450 |
RefSeq | NP_000786 |
UniProt | P14416 |
Other data | |
Locus | Chr. 11 q22 |
The D1–D2 dopamine receptor heteromer is a receptor heteromer consisting of D1 and D2 protomers.
Structure
D1 and D2 receptors interact primarily through discrete amino acids in the cytoplasmic regions of each receptor, with no involvement of transmembrane parts. The intracellular loop 3 of the D2 receptor contains two adjacent arginine residues, while the carboxyl tail of the D1 receptor possesses two adjacent glutamic acid residues. The two receptors can form a heteromer complex via a salt bridge between the guanidine moiety and the carboxylic group.[1]
Signal transduction
The signalling of the D1–D2 receptor heteromer is distinct from that of the parent receptor monomers. It comprises Gq/11 coupling, phospholipase C activation, intracellular calcium release from inositol trisphosphate receptor-sensitive stores, CaMKII activation[2] and BDNF production.[3] In comparison, signalling of the homologous D5–D2 receptor heteromer involves the influx of extracellular calcium.[4]
Physiology
The D1–D2 receptor is upregulated in individuals with major depression, and especially the ratio D1–D2 to D1 receptor is markedly shifted towards the heteromer. Counteracting this upregulation decreases depressive symptoms. Disruption of the heteromer can be achieved either directly by ligands interacting with the cytoplasmic interface, less directly by ligands that target the extracellular binding site, or indirectly as a downstream effect of classical antidepressant treatment.[5] One study found negative results regarding a shift from Gs/a coupling to Gq/11 signaling; so such dynamics could be mediated by cAMP-dependent cascades rather from phospholipase C regulation.[6]
Chronic THC increased the number of D1-D2 heteromer-expressing neurons, and the number of heteromers within individual neurons in adult monkey striatum.[7]
Ligands
References
- ↑ "Two amino acids in each of D1 and D2 dopamine receptor cytoplasmic regions are involved in D1-D2 heteromer formation". Biochemical and Biophysical Research Communications 417 (1): 23–8. January 2012. doi:10.1016/j.bbrc.2011.11.027. PMID 22100647.
- ↑ "Activation of calcium/calmodulin-dependent protein kinase IIalpha in the striatum by the heteromeric D1-D2 dopamine receptor complex". Neuroscience 165 (2): 535–41. January 2010. doi:10.1016/j.neuroscience.2009.10.017. PMID 19837142.
- ↑ "Calcium signaling cascade links dopamine D1-D2 receptor heteromer to striatal BDNF production and neuronal growth". Proceedings of the National Academy of Sciences of the United States of America 106 (50): 21377–82. December 2009. doi:10.1073/pnas.0903676106. PMID 19948956. Bibcode: 2009PNAS..10621377H.
- ↑ "Heteromerization of dopamine D2 receptors with dopamine D1 or D5 receptors generates intracellular calcium signaling by different mechanisms". Current Opinion in Pharmacology 10 (1): 93–9. February 2010. doi:10.1016/j.coph.2009.09.011. PMID 19897420.
- ↑ "Uncoupling the dopamine D1-D2 receptor complex exerts antidepressant-like effects". Nature Medicine 16 (12): 1393–5. December 2010. doi:10.1038/nm.2263. PMID 21113156.
- ↑ "Evidence against dopamine D1/D2 receptor heteromers". Molecular Psychiatry 20 (11): 1373–85. November 2015. doi:10.1038/mp.2014.166. PMID 25560761.
- ↑ "Δ-Tetrahydrocannabinol Increases Dopamine D1-D2 Receptor Heteromer and Elicits Phenotypic Reprogramming in Adult Primate Striatal Neurons". iScience 23 (1): 100794. January 2020. doi:10.1016/j.isci.2019.100794. PMID 31972514. Bibcode: 2020iSci...23j0794H.
- ↑ "D1-D2 dopamine receptor heterooligomers with unique pharmacology are coupled to rapid activation of Gq/11 in the striatum". Proceedings of the National Academy of Sciences of the United States of America 104 (2): 654–9. January 2007. doi:10.1073/pnas.0604049104. PMID 17194762. Bibcode: 2007PNAS..104..654R.
Further reading
- "Dopamine D1-D2 receptor heteromer in dual phenotype GABA/glutamate-coexpressing striatal medium spiny neurons: regulation of BDNF, GAD67 and VGLUT1/2". PLOS ONE 7 (3): e33348. 2012. doi:10.1371/journal.pone.0033348. PMID 22428025. Bibcode: 2012PLoSO...733348P.
- "The dopamine d1-d2 receptor heteromer in striatal medium spiny neurons: evidence for a third distinct neuronal pathway in Basal Ganglia". Frontiers in Neuroanatomy 5: 31. 2011. doi:10.3389/fnana.2011.00031. PMID 21747759.
- "The dopamine D1-D2 receptor heteromer localizes in dynorphin/enkephalin neurons: increased high affinity state following amphetamine and in schizophrenia". The Journal of Biological Chemistry 285 (47): 36625–34. November 2010. doi:10.1074/jbc.M110.159954. PMID 20864528.
- "Dopamine D1-D2 receptor heteromer signaling pathway in the brain: emerging physiological relevance". Molecular Brain 4: 26. June 2011. doi:10.1186/1756-6606-4-26. PMID 21663703.
- "A novel dopamine receptor signaling unit in brain: heterooligomers of D1 and D2 dopamine receptors". TheScientificWorldJournal 7: 58–63. November 2007. doi:10.1100/tsw.2007.223. PMID 17982577.
- "Desensitization of the dopamine D1 and D2 receptor hetero-oligomer mediated calcium signal by agonist occupancy of either receptor". Molecular Pharmacology 72 (2): 450–62. August 2007. doi:10.1124/mol.107.034884. PMID 17519357.
- "D1 and D2 dopamine receptors form heterooligomers and cointernalize after selective activation of either receptor". Molecular Pharmacology 68 (3): 568–78. September 2005. doi:10.1124/mol.105.012229. PMID 15923381.
- "Dopamine D1-D2 receptor Heteromer-mediated calcium release is desensitized by D1 receptor occupancy with or without signal activation: dual functional regulation by G protein-coupled receptor kinase 2". The Journal of Biological Chemistry 285 (45): 35092–103. November 2010. doi:10.1074/jbc.M109.088625. PMID 20807772.
- "Separation and reformation of cell surface dopamine receptor oligomers visualized in cells". European Journal of Pharmacology 658 (2–3): 74–83. May 2011. doi:10.1016/j.ejphar.2011.02.030. PMID 21371461.
- "Fluorescence studies reveal heterodimerization of dopamine D1 and D2 receptors in the plasma membrane". Biochemistry 45 (29): 8751–9. July 2006. doi:10.1021/bi060702m. PMID 16846218.
- "Mechanism of action of clozapine in the context of dopamine D1-D2 receptor hetero-dimerization--a working hypothesis". Pharmacological Reports 60 (5): 581–7. 2008. PMID 19066405.
- "Role of silent polymorphisms within the dopamine D1 receptor associated with schizophrenia on D1-D2 receptor hetero-dimerization". Pharmacological Reports 61 (6): 1024–33. 2009. doi:10.1016/s1734-1140(09)70164-1. PMID 20081237. https://ruj.uj.edu.pl/xmlui/handle/item/63477.
- "Genetic variants of dopamine D2 receptor impact heterodimerization with dopamine D1 receptor". Pharmacological Reports 69 (2): 235–241. April 2017. doi:10.1016/j.pharep.2016.10.016. PMID 28119185.
Original source: https://en.wikipedia.org/wiki/D1–D2 dopamine receptor heteromer.
Read more |