Biology:Edible frog

From HandWiki
Short description: Species of amphibian

Edible frog
Rana esculenta on Nymphaea edit.JPG
Scientific classification e
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Amphibia
Order: Anura
Family: Ranidae
Genus: Pelophylax
Species:
P. lessonae × P. ridibundus
Binomial name
Pelophylax kl. esculentus
Synonyms
Pelophylax esculentus complex

The edible frog (Pelophylax kl. esculentus) [1][2] is a species of common European frog, also known as the common water frog or green frog (however, this latter term is also used for the North American species Rana clamitans).

It is used for food, particularly in France for the delicacy frog legs. Females are between 5 and 9 cm (2.0 and 3.5 in) long, males between 6 and 11 cm (2.4 and 4.3 in).

This widespread and common frog has many common names, including European dark-spotted frog, European black-spotted pond frog, and European black-spotted frog.

Distribution

Pelophylax esculentus is endemic to Europe. It naturally occurs from the northern half of France to western Russia, and from Estonia and Denmark to Bulgaria and northern Italy. The edible frog is introduced in Spain,[3] Norway[4] and the United Kingdom.[5] The natural range is nearly identical to that of P. lessonae.[6]

Hybridogenesis

Main page: Biology:Hybridogenesis in water frogs

Pelophylax kl. esculentus is the fertile hybrid of the pool frog (Pelophylax lessonae) and the marsh frog (Pelophylax ridibundus). It reproduces by hybridogenesis (hemiclonally).[7][8][9][10][11]

Hybridogenesis implies that during gametogenesis hybrids (of RL genotype) exclude one parental genome (L or R) and produce gametes with an unrecombined genome of the other parental species (R or L, respectively), instead of containing mixed recombined parental genomes.[8][9][11] The hybrid populations are usually propagated by mating (backcrosses) with a sympatric parental species – P. lessonae (LL) or P. ridibundus (RR) – providing the second, discarded parental genome (L or R respectively).[8][9][11] Hybridogenesis is thus a hemiclonal mode of reproduction; half of the genome is transmitted to the next generation clonally, unrecombined (intact); the other half sexually, recombined.[12][10][11]

For example, in the most widespread so called L–E system, edible frogs Pelophylax kl. esculentus (RE) produce gametes of the marsh frog P. ridibundus (R) and mate with coexisting pool frogs Pelophylax lessonae (L gametes) – see below in the middle.[8][11]

Example crosses between pool frog (Pelophylax lessonae), marsh frog (P. ridibundus) and their hybrid, edible frog (P. kl. esculentus). The first is the primary hybridisation generating the hybrid; the second is the most widespread type of hybridogenesis.[8][10]

Because this hybrid requires another taxon as a sexual host to reproduce, usually one of the parental species, it is a klepton[13][14][15]. Hence the addition of the "kl." (for klepton) in the species name.[16]

There are also known all-hybrid populations, where diploid hybrids (LR) coexist with triploid (LLR or LRR) hybrids, providing L or R genomes respectively. In this situation, diploid hybrids (LR) generate not only haploid R or L gametes, but also the diploid gametes (RL) needed to recreate triploids.[8][9]

References

  1. Frost, Darrel R. (2006). "Amphibian Species of the World: an Online Reference. Version 4". American Museum of Natural History, New York, USA. http://research.amnh.org/herpetology/amphibia/index.php.. 
  2. Frost, Grant, Faivovich, Bain, Haas, Haddad, de Sá, Channing, Wilkinson, Donnellan, Raxworthy, Campbell, Blotto, Moler, Drewes, Nussbaum, Lynch, Green, and Wheeler 2006. The amphibian tree of life. Bulletin of the American Museum of Natural History. Number 297. New York. Issued March 15, 2006.
  3. Sergius Kuzmin, David Tarkhnishvili, Vladimir Ishchenko, Tatjana Dujsebayeva, Boris Tuniyev, Theodore Papenfuss, Trevor Beebee, Ismail H. Ugurtas, Max Sparreboom, Nasrullah Rastegar-Pouyani, Ahmad Mohammed Mousa Disi, Steven Anderson, Mathieu Denoël, Franco Andreone (2009). "Pelophylax ridibundus". IUCN Red List of Threatened Species 2009: e.T58705A11825745. doi:10.2305/IUCN.UK.2009.RLTS.T58705A11825745.en. https://www.iucnredlist.org/species/58705/11825745. Retrieved 6 November 2023. 
  4. "Pelophylax esculentus" (in no). https://artsdatabanken.no/fremmedarter/2018/N/62. 
  5. "Non-native amphibians". https://www.arc-trust.org/non. 
  6. "Pelophylax esculentus, Edible Frog". AmphibiaWeb.. http://amphibiaweb.org/cgi/amphib_query?query_src=aw_lists_genera_&where-genus=Pelophylax&where-species=esculentus. 
  7. Berger, L. (1970). "Some characteristics of the crossess within Rana esculenta complex in postlarval development". Ann. Zool. 27: 374–416. 
  8. 8.0 8.1 8.2 8.3 8.4 8.5 Holsbeek, G.; Jooris, R. (2010). "Potential impact of genome exclusion by alien species in the hybridogenetic water frogs (Pelophylax esculentus complex)". Biol Invasions (Springer Netherlands) 12 (1): 1–13. doi:10.1007/s10530-009-9427-2. ISSN 1387-3547. Bibcode2010BiInv..12....1H. http://www.herpetologynotes.seh-herpetology.org/Volume6_PDFs/Mori_HerpetologyNotes_volume6_pages515-517.pdf. Retrieved 2015-06-21. 
  9. 9.0 9.1 9.2 9.3 Christiansen D. G. (2009). "Gamete types, sex determination and stable equilibria of all-hybrid populations of diploid and triploid edible frogs (Pelophylax esculentus) Rana esculenta as deduced from mtDNA analyses.". BMC Evolutionary Biology 9 (135): 135. doi:10.1186/1471-2148-9-135. PMID 19527499. 
  10. 10.0 10.1 10.2 Vorburger, Christoph; Reyer, Heinz-Ulrich (2003). "A genetic mechanism of species replacement in European waterfrogs?". Conservation Genetics (Kluwer Academic Publishers) 4 (2): 141–155. doi:10.1023/A:1023346824722. ISSN 1566-0621. http://www.zool.uzh.ch/static/research/oekologie/literatur/pdf05_01/Vorburger2003CG_4.pdf. Retrieved 2015-06-21. 
  11. 11.0 11.1 11.2 11.3 11.4 "Gametogenesis of intergroup hybrids of hemiclonal frogs.". Genet. Res. 89 (1): 39–45. February 2007. doi:10.1017/S0016672307008610. PMID 17517158. http://www.aseanbiodiversity.info/Abstract/51007820.pdf. Retrieved 2012-07-25. 
  12. Simon J.-C.; Delmotte F.; Rispe C.; Crease T. (2003). "Phylogenetic relationships between parthenogens and their sexual relatives: the possible routes to parthenogenesis in animals.". Biological Journal of the Linnean Society 79: 151–163. doi:10.1046/j.1095-8312.2003.00175.x. http://exa.unne.edu.ar/biologia/embriologia.animal/public_html/Bibliografia%20recomendada/Origen%20de%20la%20partenogenesis.pdf. Retrieved 2012-07-30. 
  13. Dubois, Alain (2009). "Asexual and metasexual vertebrates. Book review". Alytes (ISSCA (International Society for the Study and Conservation of Amphibians)) 27 (2): 62–66. https://www.researchgate.net/publication/235246798. Retrieved 2015-06-22. "John C. Avise, 2008.–Clonality. The genetics, ecology, and evolution of sexual abstinence in vertebrate animals. New York, Oxford University Press: i-xi + 1-237. ISBN:978-0-19-536967-0.". 
  14. Dubois, A.; Günther, R. (1982). "Klepton and synklepton: two new evolutionary systematics categories in zoology". Zool. Jahrb. Syst. (Zoologische Jahrbücher. Abteilung für Systematik, Ökologie und Geographie der Tiere) (Jena; Stuttgart; New York.: Gustav Fischer Verlag) 109: 290–305. ISSN 0044-5193. 
  15. Polls Pelaz, Manuel (October 1990). "The Biological Klepton Concept (BKC)". Alytes (ISSCA (International Society for the Study and Conservation of Amphibians)) 8 (3): 75–89. http://alytes.mnhn.fr/article.php?id=196. Retrieved 2015-06-22. 
  16. Dubois, Alain (October 1990). "Nomenclature of parthenogenetic, gynogenetic and hybridogenetic vertebrate taxons: new proposals". Alytes (ISSCA (International Society for the Study and Conservation of Amphibians)) 8 (3): 61–74. http://alytes.mnhn.fr/article.php?id=195. Retrieved 2015-06-22. 

External links

Wikidata ☰ Q31694 entry