Biology:Neodiapsida

From HandWiki
Short description: Clade of reptiles

Neodiapsids
Temporal range:
CisuralianPresent, 289–0 Ma
Orovenator skull diagram.png
Skull of Orovenator, the earliest known neodiapsid
Megalancosaurus skeletal.png
Skeleton of Megalancosaurus, a drepanosaur
Scientific classification e
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Reptilia
Clade: Diapsida
Clade: Neodiapsida
Benton, 1985
Subgroups and genera

Neodiapsida is a clade, or major branch, of the reptilian family tree, typically defined as including all diapsids apart from some early primitive types known as the araeoscelidians. Modern reptiles and birds belong to the neodiapsid subclade Sauria.

The oldest known neodiapsids are Orovenator and Maiothisavros from the Early Permian of North America, around 290 million years old.[1][2]

Basal-non saurian neodiaspids were ancestrally lizard-like, but basal non-saurian neodiapsids include aquatic/amphibious taxa (Claudiosaurus and some tangasaurids)[3] the gliding lizard-like Weigeltisauridae,[4] as well as the Triassic chameleon-like drepanosaurs.[5] The position of the highly derived Mesozoic marine reptile groups Thalattosauria, Ichthyosauromorpha and Sauropterygia within Neodiapsida is uncertain, and they may lie within Sauria.[6]

Classification

The clade Neodiapsida was given a phylogenetic definition by Laurin in 1991. He defined it as the branch-based clade containing all animals more closely related to "Younginiformes" (later, more specifically, emended to Youngina capensis) than to Petrolacosaurus.[7] The cladogram presented here illustrates the "family tree" of reptiles, and follows a simplified version of the relationships found by M.S. Lee, in 2013.[8] All genetic studies have supported the hypothesis that turtles are diapsid reptiles; some have placed turtles within archosauromorpha,[8][9] or, more commonly, as a sister group to extant archosaurs.[10][11][12][13] though a few have recovered turtles as lepidosauromorphs instead.[14] The cladogram of Lee (2013) below used a combination of genetic (molecular) and fossil (morphological) data to obtain its results.[8]

Diapsida

Araeoscelidia Spinoaequalis schultzei reconstruction.jpg

Neodiapsida

ClaudiosaurusClaudiosaurus white background.jpg

YounginiformesHovasaurus BW flipped.jpg

Sauria
Lepidosauromorpha

KuehneosauridaeIcarosaurus white background.jpg

Lepidosauria

Rhynchocephalia (tuatara and their extinct relatives)Hatteria white background.jpg

Squamata (lizards and snakes)British reptiles, amphibians, and fresh-water fishes (1920) (Lacerta agilis).jpg

Archosauromorpha

ChoristoderaHyphalosaurus mmartyniuk wiki.png

ProlacertiformesProlacerta broomi.jpg

TrilophosaurusTrilophosaurus buettneri (flipped).jpg

RhynchosauriaHyperodapedon BW2 white background.jpg

Archosauriformes (crocodiles, birds, and their extinct relatives) Deinosuchus riograndensis.png

This second cladogram is based on the 2017 study by Pritchard and Nesbitt.[15]

Neodiapsida

OrovenatorOrovenator.jpg

DrepanosauromorphaMegalancosaurus BW.jpg

WeigeltisauridaeWeigeltisaurus reconstruction.png

ClaudiosaurusClaudiosaurus white background.jpg

Younginidae (Youngina+unnamed species)

TangasauridaeHovasaurus BW flipped.jpg (Hovasaurus, Thadeosaurus, Acerosodontosaurus)

Sauria

LepidosauriaZoology of Egypt (1898) (Varanus griseus).png

Archosauromorpha

ProtorosaurusProtorosaurus BW.jpg

TanystropheidaeMacrocnemus BW.jpg

RhynchosauriaHyperodapedon BW2 white background.jpg

AllokotosauriaTrilophosaurus buettneri (flipped).jpg

ProlacertaProlacerta broomi.jpg

ArchosauriformesDeinosuchus riograndensis.png

The following cladogram was found by Simões et al. (2022): [16]

Neoreptilia

ProcolophonomorphaScutosaurus BW.jpg

Neodiapsida

YounginiformesHovasaurus BW flipped.jpg

Eunotosaurus

WeigeltisauridaeWeigeltisaurus reconstruction.png

Sauria
Lepidosauromorpha

Rhynchocephalia (tuatara and their extinct relatives)Hatteria white background.jpg

Squamata (lizards and snakes)British reptiles, amphibians, and fresh-water fishes (1920) (Lacerta agilis).jpg

Archelosauria

Pantestudines (turtles and extinct relatives)Erpétologie générale, ou, Histoire naturelle complète des reptiles (Centrochelys sulcata).jpg

Archosauromorpha

IchthyosauromorphaIchthyosaurus BW.jpg

Thalattosauria Miodentosaurus BW.jpg

Sauropterygia Dolichorhynchops BW flipped.jpg

ProtorosauridaeProtorosaurus BW.jpg

TanystropheidaeMacrocnemus BW.jpg

KuehneosauridaeIcarosaurus white background.jpg

DrepanosauromorphaMegalancosaurus BW.jpg

AllokotosauriaTrilophosaurus buettneri (flipped).jpg

RhynchosauriaHyperodapedon BW2 white background.jpg

Archosauriformes (crocodiles, birds, and their extinct relatives) Deinosuchus riograndensis.png

References

  1. Ford, David P.; Benson, Roger B. J. (May 2019). Mannion, Philip. ed. "A redescription of Orovenator mayorum (Sauropsida, Diapsida) using high‐resolution μ CT , and the consequences for early amniote phylogeny" (in en). Papers in Palaeontology 5 (2): 197–239. doi:10.1002/spp2.1236. ISSN 2056-2802. 
  2. Mooney, Ethan D.; Maho, Tea; Bevitt, Joseph J.; Reisz, Robert R. (2022-11-30). Liu, Jun. ed. "An intriguing new diapsid reptile with evidence of mandibulo-dental pathology from the early Permian of Oklahoma revealed by neutron tomography" (in en). PLOS ONE 17 (11): e0276772. doi:10.1371/journal.pone.0276772. ISSN 1932-6203. PMID 36449456. 
  3. Nuñez Demarco, Pablo; Meneghel, Melitta; Laurin, Michel; Piñeiro, Graciela (2018-07-27). "Was Mesosaurus a Fully Aquatic Reptile?". Frontiers in Ecology and Evolution 6: 109. doi:10.3389/fevo.2018.00109. ISSN 2296-701X. 
  4. Pritchard, Adam C.; Sues, Hans-Dieter; Scott, Diane; Reisz, Robert R. (2021-05-20). "Osteology, relationships and functional morphology of Weigeltisaurus jaekeli (Diapsida, Weigeltisauridae) based on a complete skeleton from the Upper Permian Kupferschiefer of Germany" (in en). PeerJ 9: e11413. doi:10.7717/peerj.11413. ISSN 2167-8359. PMID 34055483. 
  5. Pritchard, Adam C.; Nesbitt, Sterling J. (October 2017). "A bird-like skull in a Triassic diapsid reptile increases heterogeneity of the morphological and phylogenetic radiation of Diapsida" (in en). Royal Society Open Science 4 (10): 170499. doi:10.1098/rsos.170499. ISSN 2054-5703. PMID 29134065. Bibcode2017RSOS....470499P. 
  6. Simões, Tiago R.; Kammerer, Christian F.; Caldwell, Michael W.; Pierce, Stephanie E. (2022-08-19). "Successive climate crises in the deep past drove the early evolution and radiation of reptiles" (in en). Science Advances 8 (33): eabq1898. doi:10.1126/sciadv.abq1898. ISSN 2375-2548. PMID 35984885. Bibcode2022SciA....8.1898S. 
  7. Reisz, Robert R.; Modesto, Sean P.; Scott, Diane M. (22 December 2011). "A new Early Permian reptile and its significance in early diapsid evolution". Proceedings of the Royal Society B: Biological Sciences 278 (1725): 3731–3737. doi:10.1098/rspb.2011.0439. PMID 21525061. 
  8. 8.0 8.1 8.2 Lee, M. S. Y. (2013). "Turtle origins: Insights from phylogenetic retrofitting and molecular scaffolds". Journal of Evolutionary Biology 26 (12): 2729–2738. doi:10.1111/jeb.12268. PMID 24256520. 
  9. Mannen, Hideyuki; Li, Steven S. -L. (Oct 1999). "Molecular evidence for a clade of turtles". Molecular Phylogenetics and Evolution 13 (1): 144–148. doi:10.1006/mpev.1999.0640. PMID 10508547. 
  10. Zardoya, R.; Meyer, A. (1998). "Complete mitochondrial genome suggests diapsid affinities of turtles". Proc Natl Acad Sci U S A 95 (24): 14226–14231. doi:10.1073/pnas.95.24.14226. ISSN 0027-8424. PMID 9826682. Bibcode1998PNAS...9514226Z. 
  11. Iwabe, N.; Hara, Y.; Kumazawa, Y.; Shibamoto, K.; Saito, Y.; Miyata, T.; Katoh, K. (2004-12-29). "Sister group relationship of turtles to the bird-crocodilian clade revealed by nuclear DNA-coded proteins". Molecular Biology and Evolution 22 (4): 810–813. doi:10.1093/molbev/msi075. PMID 15625185. 
  12. Roos, Jonas; Aggarwal, Ramesh K.; Janke, Axel (Nov 2007). "Extended mitogenomic phylogenetic analyses yield new insight into crocodylian evolution and their survival of the Cretaceous–Tertiary boundary". Molecular Phylogenetics and Evolution 45 (2): 663–673. doi:10.1016/j.ympev.2007.06.018. PMID 17719245. 
  13. Katsu, Y.; Braun, E. L.; Guillette, L. J. Jr.; Iguchi, T. (2010-03-17). "From reptilian phylogenomics to reptilian genomes: analyses of c-Jun and DJ-1 proto-oncogenes". Cytogenetic and Genome Research 127 (2–4): 79–93. doi:10.1159/000297715. PMID 20234127. 
  14. Tyler R. Lyson; Erik A. Sperling; Alysha M. Heimberg; Jacques A. Gauthier; Benjamin L. King; Kevin J. Peterson (2012-02-23). "MicroRNAs support a turtle + lizard clade". Biology Letters 8 (1): 104–107. doi:10.1098/rsbl.2011.0477. PMID 21775315. 
  15. Pritchard, Adam C.; Nesbitt, Sterling J. (2017-10-11). "A bird-like skull in a Triassic diapsid reptile increases heterogeneity of the morphological and phylogenetic radiation of Diapsida". Royal Society Open Science 4 (10): 170499. doi:10.1098/rsos.170499. ISSN 2054-5703. PMID 29134065. Bibcode2017RSOS....470499P. 
  16. Simões, Tiago R.; Kammerer, Christian F.; Caldwell, Michael W.; Pierce, Stephanie E. (2022-08-19). "Successive climate crises in the deep past drove the early evolution and radiation of reptiles" (in en). Science Advances 8 (33): eabq1898. doi:10.1126/sciadv.abq1898. ISSN 2375-2548. PMID 35984885. Bibcode2022SciA....8.1898S. 
  • Callaway, J.M. (1997), Ichthyosauria: Introduction, in JM Callaway & EL Nicholls (eds.), Ancient Marine Reptiles. Academic Press, pp. 3–16.
  • Laurin, Michel and Gauthier, Jacques A. (2000) Autapomorphies of Diapsid Clades

External links

Wikidata ☰ Q3497035 entry