Biology:TLN2

From HandWiki
A representation of the 3D structure of the protein myoglobin showing turquoise α-helices.
Generic protein structure example

Talin 2 is a protein in humans that is encoded by the TLN2 gene. It belongs to the talin protein family. This gene encodes a protein related to talin 1, a cytoskeletal protein that plays a significant role in the assembly of actin filaments. Talin-2 is expressed at high levels in cardiac muscle and functions to provide linkages between the extracellular matrix and actin cytoskeleton at costamere structures to transduce force laterally.[1]

Structure

Human talin-2 is 271.4 kDa and 2542 amino acids in length.[2] The size of talin-2 protein is similar to talin-1, and is relatively similar (74% identity, 86% similarity); the size of the talin-2 gene (200 kb) is however much larger than that of talin-1 (30 kb), due to differences in intron sizes.[3] Talin-2 mRNA is expressed in multiple tissues, including cardiac muscle, mouse embryonic stem cells, brain, lung, skeletal muscle, kidney and testis; however expression is highest in cardiac muscle.[3][4][5][6] A detailed analysis of the TLN2 gene revealed that the alternative splicing of TLN2 is complex and encodes multiple mRNA transcripts and protein isoforms. Studies revealed a promoter associated with a CpG island that accounts for most of the TLN2 expression in adult tissues. This promoter is separated from the first coding exon by approximately > 200 kb of alternatively spliced noncoding exons. The testis and kidney talin-2 isoforms lack the N-terminal 50% of the protein, and evidence suggests that this is the isoform expressed in elongating spermatids.[7] Talin is also post-translationally modified via calpain 2-mediated cleavage, which may target it for ubiquitin-proteasome-mediated degradation and turnover of associated cell adhesion structures.[8]

Function

The expression of talin-2 in striated muscle is developmentally regulated. Undifferentiated myoblasts primarily express talin-1, and both mRNA and protein expression of talin-2 is upregulated during differentiation; ectopic expression of talin-2 in undifferentiated myoblasts dysregulates the actin cytoskeleton, demonstrating that the timing of talin-2 expression during development is critical. In mature cardiomyocytes and skeletal muscle, talin-2 is expressed at costameres and intercalated discs, thus demonstrating that talin2 links integrins and the actin cytoskeleton in stable adhesion complexes involving mature sarcomeres.[6][9] Talin-2 appears to play a role in skeletal muscle development; specifically, in myoblast fusion, sarcomere assembly, and the integrity of myotendinous junctions. Ablation of both talin isoforms, talin-2 and talin-1 prevented normal myoblast fusion and sarcomere assembly, as well as assembly of integrin adhesion complexes, which was attributed to disrupted interactions between integrins and the actin cytoskeleton.[10] The mRNA expression of talin-2 has been shown to be regulated by the muscle-specific fragile X mental retardation, autosomal homolog 1 (FXR1) protein, which binds talin2 mRNAs directly and represses translation. Knockout of FXR1 upregulates talin-2 protein, which disrupts the architecture of desmosomes and costameres in cardiac muscle.[11]

Talin-2, like talin-1 appears to join ligand-bound integrins and the actin cytoskeleton, which enhances the affinity of integrins for the extracellular matrix and catalyzes focal adhesion-dependent signaling pathways,[12] as well as reinforces the cytoskeletal-integrin structure in response to an applied force.[13] The strength of the interaction between talin and integrin appears to be fine-tuned through differential expression of isoforms in different tissues. The talin-2/β1D-integrin isoforms that are expressed and colocalize in striated muscle form a markedly strong interaction, and a few amino acid deletions in the β1-integrin tail can alter this interaction by 1000-fold.[14]

Talin-2 is found within the neuronal synaptic region in brain tissue, and plays a role in clathrin-mediated endocytosis, coordinating phosphatidylinositol synthesis, and modulating actin dynamics through interactions with PIP kinase type 1γ, the major phosphatidylinositol 4,5-bisphosphate-synthesizing enzyme of the brain.[15]

Clinical significance

In patients with temporal lobe epilepsy, talin-2 protein was detected in cerebrospinal fluid, whereas expression was absent in non-epileptic patients.[16] Furthermore, postencephalitic epilepsy patients that were refractory to drug treatment exhibited markedly elevated levels of talin-2 protein in cerebrospinal fluid and reciprocally decreased levels in serum.[17] These data suggest that talin-2 may prove useful as a biomarker for epilepsy, and may be pathologically linked to this disease.

Studies have also shown that TLN2 is a direct target of miR-132, which is epigenetically silenced in prostate cancer,[18] suggesting that talin-2 may play a role in modulating cell adhesion in prostate cancer.

Interactions

TLN2 has been shown to interact with:

References

  1. "Entrez Gene: Talin 2". https://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=retrieve&list_uids=83660. 
  2. "Protein sequence of human TLN2 (Uniprot ID: Q9Y4G6)". http://www.heartproteome.org/copa/ProteinInfo.aspx?QType=Protein%20ID&QValue=Q9Y4G6. 
  3. 3.0 3.1 "Analysis of the mammalian talin2 gene TLN2". Biochemical and Biophysical Research Communications 286 (5): 880–5. Sep 2001. doi:10.1006/bbrc.2001.5497. PMID 11527381. 
  4. "New isoform-specific monoclonal antibodies reveal different sub-cellular localisations for talin1 and talin2". European Journal of Cell Biology 91 (3): 180–91. Mar 2012. doi:10.1016/j.ejcb.2011.12.003. PMID 22306379. 
  5. "The N-terminal half of talin2 is sufficient for mouse development and survival". Biochemical and Biophysical Research Communications 337 (2): 670–6. Nov 2005. doi:10.1016/j.bbrc.2005.09.100. PMID 16202389. 
  6. 6.0 6.1 "Talin2 is induced during striated muscle differentiation and is targeted to stable adhesion complexes in mature muscle". Cell Motility and the Cytoskeleton 64 (3): 157–73. Mar 2007. doi:10.1002/cm.20173. PMID 17183545. 
  7. "Talin 2 is a large and complex gene encoding multiple transcripts and protein isoforms". The FEBS Journal 276 (6): 1610–28. Mar 2009. doi:10.1111/j.1742-4658.2009.06893.x. PMID 19220457. 
  8. "Talin contains a C-terminal calpain2 cleavage site important in focal adhesion dynamics". PLOS ONE 7 (4): e34461. 2012. doi:10.1371/journal.pone.0034461. PMID 22496808. 
  9. "Talin1 has unique expression versus talin 2 in the heart and modifies the hypertrophic response to pressure overload". The Journal of Biological Chemistry 288 (6): 4252–64. Feb 2013. doi:10.1074/jbc.M112.427484. PMID 23266827. 
  10. "Talin 1 and 2 are required for myoblast fusion, sarcomere assembly and the maintenance of myotendinous junctions". Development 136 (21): 3597–606. Nov 2009. doi:10.1242/dev.035857. PMID 19793892. 
  11. "Desmoplakin and talin2 are novel mRNA targets of fragile X-related protein-1 in cardiac muscle". Circulation Research 109 (3): 262–71. Jul 2011. doi:10.1161/CIRCRESAHA.111.244244. PMID 21659647. 
  12. "Talin depletion reveals independence of initial cell spreading from integrin activation and traction". Nature Cell Biology 10 (9): 1062–8. Sep 2008. doi:10.1038/ncb1765. PMID 19160486. 
  13. "Clustering of alpha(5)beta(1) integrins determines adhesion strength whereas alpha(v)beta(3) and talin enable mechanotransduction". Proceedings of the National Academy of Sciences of the United States of America 106 (38): 16245–50. Sep 2009. doi:10.1073/pnas.0902818106. PMID 19805288. 
  14. "Structural diversity in integrin/talin interactions". Structure 18 (12): 1654–66. Dec 2010. doi:10.1016/j.str.2010.09.018. PMID 21134644. 
  15. "A role for talin in presynaptic function". The Journal of Cell Biology 167 (1): 43–50. Oct 2004. doi:10.1083/jcb.200406020. PMID 15479735. 
  16. "Proteomic analysis of cerebrospinal fluid from patients with idiopathic temporal lobe epilepsy". Brain Research 1255: 180–9. Feb 2009. doi:10.1016/j.brainres.2008.12.008. PMID 19109932. 
  17. "Talin 2 concentrations in cerebrospinal fluid in patients with epilepsy". Clinical Biochemistry 43 (13–14): 1129–32. Sep 2010. doi:10.1016/j.clinbiochem.2010.06.015. PMID 20620133. 
  18. "DNA methylation silences miR-132 in prostate cancer". Oncogene 32 (1): 127–34. Jan 2013. doi:10.1038/onc.2012.14. PMID 22310291. 
  19. "Talin contains three actin-binding sites each of which is adjacent to a vinculin-binding site". Journal of Cell Science 109 (11): 2715–26. Nov 1996. doi:10.1242/jcs.109.11.2715. PMID 8937989. https://figshare.com/articles/journal_contribution/Talin_contains_three_actin-binding_sites_each_of_which_is_adjacent_to_a_vinculin-binding_site_/10165394. 
  20. "Identification of a talin-binding site in the integrin beta(3) subunit distinct from the NPLY regulatory motif of post-ligand binding functions. The talin n-terminal head domain interacts with the membrane-proximal region of the beta(3) cytoplasmic tail". The Journal of Biological Chemistry 274 (40): 28575–83. Oct 1999. doi:10.1074/jbc.274.40.28575. PMID 10497223. 
  21. "The phosphotyrosine binding-like domain of talin activates integrins". The Journal of Biological Chemistry 277 (24): 21749–58. Jun 2002. doi:10.1074/jbc.M111996200. PMID 11932255. 
  22. "The Talin head domain binds to integrin beta subunit cytoplasmic tails and regulates integrin activation". The Journal of Biological Chemistry 274 (40): 28071–4. Oct 1999. doi:10.1074/jbc.274.40.28071. PMID 10497155. 
  23. "Layilin, a novel talin-binding transmembrane protein homologous with C-type lectins, is localized in membrane ruffles". The Journal of Cell Biology 143 (2): 429–42. Oct 1998. doi:10.1083/jcb.143.2.429. PMID 9786953. 
  24. "Structural basis for the interaction between the cytoplasmic domain of the hyaluronate receptor layilin and the talin F3 subdomain". Journal of Molecular Biology 382 (1): 112–26. Sep 2008. doi:10.1016/j.jmb.2008.06.087. PMID 18638481. 
  25. "Interaction of focal adhesion kinase with cytoskeletal protein talin". The Journal of Biological Chemistry 270 (28): 16995–9. Jul 1995. doi:10.1074/jbc.270.28.16995. PMID 7622520. 
  26. "Differential regulation of Pyk2 and focal adhesion kinase (FAK). The C-terminal domain of FAK confers response to cell adhesion". The Journal of Biological Chemistry 273 (4): 2384–9. Jan 1998. doi:10.1074/jbc.273.4.2384. PMID 9442086. 

Further reading