Burr distribution

From HandWiki
Burr Type XII
Probability density function
Burr pdf.svg
Cumulative distribution function
Burr cdf.svg
Parameters [math]\displaystyle{ c \gt 0\! }[/math]
[math]\displaystyle{ k \gt 0\! }[/math]
Support [math]\displaystyle{ x \gt 0\! }[/math]
PDF [math]\displaystyle{ ck\frac{x^{c-1}}{(1+x^c)^{k+1}}\! }[/math]
CDF [math]\displaystyle{ 1-\left(1+x^c\right)^{-k} }[/math]
Mean [math]\displaystyle{ \mu_1=k\operatorname{\Beta}(k-1/c,\, 1+1/c) }[/math] where Β() is the beta function
Median [math]\displaystyle{ \left(2^{\frac{1}{k}}-1\right)^\frac{1}{c} }[/math]
Mode [math]\displaystyle{ \left(\frac{c-1}{kc+1}\right)^\frac{1}{c} }[/math]
Variance [math]\displaystyle{ -\mu_1^2+\mu_2 }[/math]
Skewness [math]\displaystyle{ \frac{ 2\mu _{1}^{3}-3\mu _{1}\mu _{2}+\mu _{3}}{\left( -\mu _{1}^{2}+\mu _{2}\right)^{3/2}} }[/math]
Kurtosis [math]\displaystyle{ \frac{-3\mu _{1}^{4}+6\mu _{1}^{2}\mu _{2}-4\mu _{1}\mu _{3}+\mu _{4}}{\left( -\mu _{1}^{2}+\mu _{2}\right)^{2}}-3 }[/math] where moments (see) [math]\displaystyle{ \mu_r =k\operatorname{\Beta}\left(\frac{ck-r}{c},\, \frac{c+r}{c}\right) }[/math]
CF [math]\displaystyle{ = \frac{c(-it)^{kc}}{\Gamma(k)}H_{1,2}^{2,1}\!\left[(-it)^c\left| \begin{matrix} (-k, 1)\\(0, 1),(-kc,c)\end{matrix}\right. \right], t\neq 0 }[/math]
[math]\displaystyle{ = 1, t = 0 }[/math]
where [math]\displaystyle{ \Gamma }[/math] is the Gamma function and [math]\displaystyle{ H }[/math] is the Fox H-function.[1]

In probability theory, statistics and econometrics, the Burr Type XII distribution or simply the Burr distribution[2] is a continuous probability distribution for a non-negative random variable. It is also known as the Singh–Maddala distribution[3] and is one of a number of different distributions sometimes called the "generalized log-logistic distribution".

Definitions

Probability density function

The Burr (Type XII) distribution has probability density function:[4][5]

[math]\displaystyle{ \begin{align} f(x;c,k) & = ck\frac{x^{c-1}}{(1+x^c)^{k+1}} \\[6pt] f(x;c,k,\lambda) & = \frac{ck}{\lambda} \left( \frac{x}{\lambda} \right)^{c-1} \left[1 + \left(\frac{x}{\lambda}\right)^c\right]^{-k-1} \end{align} }[/math]

The [math]\displaystyle{ \lambda }[/math] parameter scales the underlying variate and is a positive real.

Cumulative distribution function

The cumulative distribution function is:

[math]\displaystyle{ F(x;c,k) = 1-\left(1+x^c\right)^{-k} }[/math]
[math]\displaystyle{ F(x;c,k,\lambda) = 1 - \left[1 + \left(\frac{x}{\lambda}\right)^c \right]^{-k} }[/math]

Applications

It is most commonly used to model household income, see for example: Household income in the U.S. and compare to magenta graph at right.

Random variate generation

Given a random variable [math]\displaystyle{ U }[/math] drawn from the uniform distribution in the interval [math]\displaystyle{ \left(0, 1\right) }[/math], the random variable

[math]\displaystyle{ X=\lambda \left (\frac{1}{\sqrt[k]{1-U}}-1 \right )^{1/c} }[/math]

has a Burr Type XII distribution with parameters [math]\displaystyle{ c }[/math],[math]\displaystyle{ k }[/math] and [math]\displaystyle{ \lambda }[/math]. This follows from the inverse cumulative distribution function given above.

Related distributions

  • The Burr Type XII distribution is a member of a system of continuous distributions introduced by Irving W. Burr (1942), which comprises 12 distributions.[8]
  • The Dagum distribution, also known as the inverse Burr distribution, is the distribution of 1 / X, where X has the Burr distribution

References

  1. Nadarajah, S.; Pogány, T. K.; Saxena, R. K. (2012). "On the characteristic function for Burr distributions". Statistics 46 (3): 419–428. doi:10.1080/02331888.2010.513442. 
  2. Burr, I. W. (1942). "Cumulative frequency functions". Annals of Mathematical Statistics 13 (2): 215–232. doi:10.1214/aoms/1177731607. 
  3. Singh, S.; Maddala, G. (1976). "A Function for the Size Distribution of Incomes". Econometrica 44 (5): 963–970. doi:10.2307/1911538. 
  4. Maddala, G. S. (1996). Limited-Dependent and Qualitative Variables in Econometrics. Cambridge University Press. ISBN 0-521-33825-5. 
  5. Tadikamalla, Pandu R. (1980), "A Look at the Burr and Related Distributions", International Statistical Review 48 (3): 337–344, doi:10.2307/1402945 
  6. C. Kleiber and S. Kotz (2003). Statistical Size Distributions in Economics and Actuarial Sciences. New York: Wiley.  See Sections 7.3 "Champernowne Distribution" and 6.4.1 "Fisk Distribution."
  7. Champernowne, D. G. (1952). "The graduation of income distributions". Econometrica 20 (4): 591–614. doi:10.2307/1907644. 
  8. See Kleiber and Kotz (2003), Table 2.4, p. 51, "The Burr Distributions."

Further reading

External links