Cahen's constant

From HandWiki

In mathematics, Cahen's constant is defined as the value of an infinite series of unit fractions with alternating signs:

[math]\displaystyle{ C = \sum_{i=0}^\infty \frac{(-1)^i}{s_i-1}=\frac11 - \frac12 + \frac16 - \frac1{42} + \frac1{1806} - \cdots\approx 0.643410546288... }[/math] (sequence A118227 in the OEIS)

Here [math]\displaystyle{ (s_i)_{i \geq 0} }[/math] denotes Sylvester's sequence, which is defined recursively by

[math]\displaystyle{ \begin{array}{l} s_0~~~ = 2; \\ s_{i+1} = 1 + \prod_{j=0}^i s_j \text{ for } i \geq 0. \end{array} }[/math]

Combining these fractions in pairs leads to an alternative expansion of Cahen's constant as a series of positive unit fractions formed from the terms in even positions of Sylvester's sequence. This series for Cahen's constant forms its greedy Egyptian expansion:

[math]\displaystyle{ C = \sum\frac{1}{s_{2i}}=\frac12+\frac17+\frac1{1807}+\frac1{10650056950807}+\cdots }[/math]

This constant is named after Eugène Cahen (fr) (also known for the Cahen–Mellin integral), who was the first to introduce it and prove its irrationality.[1]

Continued fraction expansion

The majority of naturally occurring[2] mathematical constants have no known simple patterns in their continued fraction expansions.[3] Nevertheless, the complete continued fraction expansion of Cahen's constant [math]\displaystyle{ C }[/math] is known: it is [math]\displaystyle{ C = \left[a_0^2; a_1^2, a_2^2, a_3^2, a_4^2, \ldots\right] = [0;1,1,1,4,9,196,16641,\ldots] }[/math] where the sequence of coefficients

0, 1, 1, 1, 2, 3, 14, 129, 25298, 420984147, ... (sequence A006279 in the OEIS)

is defined by the recurrence relation [math]\displaystyle{ a_0 = 0,~a_1 = 1,~a_{n+2} = a_n\left(1 + a_n a_{n+1}\right)~\forall~n\in\mathbb{Z}_{\geqslant 0}. }[/math] All the partial quotients of this expansion are squares of integers. Davison and Shallit made use of the continued fraction expansion to prove that [math]\displaystyle{ C }[/math] is transcendental.[4]

Alternatively, one may express the partial quotients in the continued fraction expansion of Cahen's constant through the terms of Sylvester's sequence: To see this, we prove by induction on [math]\displaystyle{ n \geq 1 }[/math] that [math]\displaystyle{ 1+a_n a_{n+1} = s_{n-1} }[/math]. Indeed, we have [math]\displaystyle{ 1+a_1 a_2 = 2 = s_0 }[/math], and if [math]\displaystyle{ 1+a_n a_{n+1} = s_{n-1} }[/math] holds for some [math]\displaystyle{ n \geq 1 }[/math], then

[math]\displaystyle{ 1+a_{n+1}a_{n+2} = 1+a_{n+1} \cdot a_n(1+a_n a_{n+1})= 1+a_n a_{n+1} + (a_na_{n+1})^2 = s_{n-1} + (s_{n-1}-1)^2 = s_{n-1}^2-s_{n-1}+1 = s_n, }[/math]where we used the recursion for [math]\displaystyle{ (a_n)_{n \geq 0} }[/math] in the first step respectively the recursion for [math]\displaystyle{ (s_n)_{n \geq 0} }[/math] in the final step. As a consequence, [math]\displaystyle{ a_{n+2} = a_n \cdot s_{n-1} }[/math] holds for every [math]\displaystyle{ n \geq 1 }[/math], from which it is easy to conclude that

[math]\displaystyle{ C = [0;1,1,1,s_0^2, s_1^2, (s_0s_2)^2, (s_1s_3)^2, (s_0s_2s_4)^2,\ldots] }[/math].

Best approximation order

Cahen's constant [math]\displaystyle{ C }[/math] has best approximation order [math]\displaystyle{ q^{-3} }[/math]. That means, there exist constants [math]\displaystyle{ K_1, K_2 \gt 0 }[/math] such that the inequality [math]\displaystyle{ 0 \lt \Big| C - \frac{p}{q} \Big| \lt \frac{K_1}{q^3} }[/math] has infinitely many solutions [math]\displaystyle{ (p,q) \in \mathbb{Z} \times \mathbb{N} }[/math], while the inequality [math]\displaystyle{ 0 \lt \Big| C - \frac{p}{q} \Big| \lt \frac{K_2}{q^3} }[/math] has at most finitely many solutions [math]\displaystyle{ (p,q) \in \mathbb{Z} \times \mathbb{N} }[/math]. This implies (but is not equivalent to) the fact that [math]\displaystyle{ C }[/math] has irrationality measure 3, which was first observed by (Duverney Shiokawa).

To give a proof, denote by [math]\displaystyle{ (p_n/q_n)_{n \geq 0} }[/math] the sequence of convergents to Cahen's constant (that means, [math]\displaystyle{ q_{n-1} = a_n \text{ for every } n \geq 1 }[/math]).[5]

But now it follows from [math]\displaystyle{ a_{n+2} = a_n \cdot s_{n-1} }[/math]and the recursion for [math]\displaystyle{ (s_n)_{n \geq 0} }[/math] that

[math]\displaystyle{ \frac{a_{n+2}}{a_{n+1}^2} = \frac{a_{n} \cdot s_{n-1}}{a_{n-1}^2 \cdot s_{n-2}^2} = \frac{a_n}{a_{n-1}^2} \cdot \frac{s_{n-2}^2 - s_{n-2} + 1}{s_{n-1}^2} = \frac{a_n}{a_{n-1}^2} \cdot \Big( 1 - \frac{1}{s_{n-1}} + \frac{1}{s_{n-1}^2} \Big) }[/math]

for every [math]\displaystyle{ n \geq 1 }[/math]. As a consequence, the limits

[math]\displaystyle{ \alpha := \lim_{n \to \infty} \frac{q_{2n+1}}{q_{2n}^2} = \prod_{n=0}^\infty \Big( 1 - \frac{1}{s_{2n}} + \frac{1}{s_{2n}^2}\Big) }[/math] and [math]\displaystyle{ \beta := \lim_{n \to \infty} \frac{q_{2n+2}}{q_{2n+1}^2} = 2 \cdot \prod_{n=0}^\infty \Big( 1 - \frac{1}{s_{2n+1}} + \frac{1}{s_{2n+1}^2}\Big) }[/math]

(recall that [math]\displaystyle{ s_0 = 2 }[/math]) both exist by basic properties of infinite products, which is due to the absolute convergence of [math]\displaystyle{ \sum_{n=0}^\infty \Big| \frac{1}{s_{n}} - \frac{1}{s_{n}^2} \Big| }[/math]. Numerically, one can check that [math]\displaystyle{ 0 \lt \alpha \lt 1 \lt \beta \lt 2 }[/math]. Thus the well-known inequality

[math]\displaystyle{ \frac{1}{q_n(q_n + q_{n+1})} \leq \Big| C - \frac{p_n}{q_n} \Big| \leq \frac{1}{q_nq_{n+1}} }[/math]

yields

[math]\displaystyle{ \Big| C - \frac{p_{2n+1}}{q_{2n+1}} \Big| \leq \frac{1}{q_{2n+1}q_{2n+2}} = \frac{1}{q_{2n+1}^3 \cdot \frac{q_{2n+2}}{q_{2n+1}^2}} \lt \frac{1}{q_{2n+1}^3} }[/math] and [math]\displaystyle{ \Big| C - \frac{p_n}{q_n} \Big| \geq \frac{1}{q_n(q_n + q_{n+1})} \gt \frac{1}{q_n(q_n + 2q_{n}^2)} \geq \frac{1}{3q_n^3} }[/math]

for all sufficiently large [math]\displaystyle{ n }[/math]. Therefore [math]\displaystyle{ C }[/math] has best approximation order 3 (with [math]\displaystyle{ K_1 = 1 \text{ and } K_2 = 1/3 }[/math]), where we use that any solution [math]\displaystyle{ (p,q) \in \mathbb{Z} \times \mathbb{N} }[/math] to

[math]\displaystyle{ 0 \lt \Big| C - \frac{p}{q} \Big| \lt \frac{1}{3q^3} }[/math]

is necessarily a convergent to Cahen's constant.

Notes

  1. Cahen (1891).
  2. A number is said to be naturally occurring if it is *not* defined through its decimal or continued fraction expansion. In this sense, e.g., Euler's number [math]\displaystyle{ e = \lim_{n \to \infty} \Big(1+\frac{1}{n}\Big)^n }[/math] is naturally occurring.
  3. Borwein et al. (2014), p. 62.
  4. Davison & Shallit (1991).
  5. Sloane, N. J. A., ed. "Sequence A006279". OEIS Foundation. https://oeis.org/A006279. 

References

  • Cahen, Eugène (1891), "Note sur un développement des quantités numériques, qui présente quelque analogie avec celui en fractions continues", Nouvelles Annales de Mathématiques 10: 508–514 
  • "Continued fractions for some alternating series", Monatshefte für Mathematik 111 (2): 119–126, 1991, doi:10.1007/BF01332350 
  • Borwein, Jonathan; van der Poorten, Alf (2014), Neverending Fractions: An Introduction to Continued Fractions, Australian Mathematical Society Lecture Series, 23, Cambridge University Press, doi:10.1017/CBO9780511902659, ISBN 978-0-521-18649-0 
  • Duverney, Daniel; Shiokawa, Iekata (2020), "Irrationality exponents of numbers related with Cahen's constant", Monatshefte für Mathematik 191 (1): 53–76, doi:10.1007/s00605-019-01335-0 

External links