Chemistry:Castanospermine

From HandWiki
Castanospermine[1][2]
Castanospermine.svg
Names
Preferred IUPAC name
(1S,6S,7R,8R,8aR)-Octahydroindolizine-1,6,7,8-tetrol
Identifiers
3D model (JSmol)
3DMet
ChEBI
ChEMBL
ChemSpider
DrugBank
EC Number
  • 616-743-4
KEGG
UNII
Properties
C8H15NO4
Molar mass 189.209 g/mol
Appearance White to off-white solid
Melting point 212 to 215 °C (414 to 419 °F; 485 to 488 K)
Soluble
Hazards
GHS pictograms GHS07: Harmful
GHS Signal word Warning
H302, H312, H332
P261, P264, P270, P271, P280, P301+312, P302+352, P304+312, P304+340, P312, P322, P330, P363, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is ☑Y☒N ?)
Infobox references
Tracking categories (test):

Castanospermine is an indolizidine alkaloid first isolated from the seeds of Castanospermum australe.[3] It is a potent inhibitor of some glucosidase enzymes[4] and has antiviral activity in vitro and in mouse models.[5]

The castanospermine derivative celgosivir is an antiviral drug candidate currently in development for possible use in treating hepatitis C virus (HCV) infection.[6]

Biosynthesis of castanospermine

L-Lys undergoes a transamination to form α-aminoadipic acid. α-aminoadipic acid undergoes a ring closure and then a reduction to form L-pipecolic acid (Figure 1).[7] In the alternate pathway (Figure 2), L-Lys cyclizes and forms the enamine, which reduces to L-pipecolic acid.

HSCoA and then malonyl-CoA react in a Claisen reaction with L-pipecolic acid to form SCoA ester which undergoes a ring closure to form 1-indolizidinone. The carbonyl on 1-indolizidinone is reduced to the hydroxyl group. The molecule is then further hydroxylated to form the final product castanospermine.[8]

Biosynthesis shown in figure:[9][10]

Figure 1: Biosynthesis of castanospermine - pathway 1: transamination of L-Lys
Figure 2: Biosynthesis of castanospermine - pathway 2: cyclization of L-Lys to form pipecolic acid

See also

References

  1. Merck Index, 11th Edition, 1902.
  2. Castanospermine at Fermentek
  3. Hohenschutz, Liza D.; Bell, E. Arthur; Jewess, Phillip J.; Leworthy, David P.; Pryce, Robert J.; Arnold, Edward; Clardy, Jon (1981). "Castanospermine, a 1,6,7,8-tetrahydroxyoctahydroindolizine alkaloid, from seeds of Castanospermum australe". Phytochemistry 20 (4): 811–14. doi:10.1016/0031-9422(81)85181-3. Bibcode1981PChem..20..811H. 
  4. R Saul; J J Ghidoni; R J Molyneux; A D Elbein (1985). "Castanospermine inhibits alpha-glucosidase activities and alters glycogen distribution in animals". PNAS 82 (1): 93–97. doi:10.1073/pnas.82.1.93. PMID 3881759. Bibcode1985PNAS...82...93S. 
  5. "Castanospermine, a potent inhibitor of dengue virus infection in vitro and in vivo". J Virol 79 (14): 8698–706. 2005. doi:10.1128/JVI.79.14.8698-8706.2005. PMID 15994763. 
  6. Durantel, D. (2009). "Celgosivir, an alpha-glucosidase I inhibitor for the potential treatment of HCV infection". Current Opinion in Investigational Drugs 10 (8): 860–70. PMID 19649930. 
  7. Hartmann, Michael; Kim, Denis; Bernsdorff, Friederike; Ajami-Rashidi, Ziba; Scholten, Nicola; Schreiber, Stefan; Zeier, Tatyana; Schuck, Stefan et al. (2017-03-22). "Biochemical Principles and Functional Aspects of Pipecolic Acid Biosynthesis in Plant Immunity". Plant Physiology 174 (1): 124–153. doi:10.1104/pp.17.00222. ISSN 0032-0889. PMID 28330936. 
  8. Dewick, Paul (2009). Medicinal Natural Products A Biosynthetic Approach. United Kingdom: Wiley. pp. 330. ISBN 978-0-470-74167-2. 
  9. Hartman, Michael (Summer 2018). "Biochemical Principles and Functional Aspects of Pipecolic Acid Biosynthesis in Plant Immunity". Plant Physiology 174 (1): 124–153. doi:10.1104/pp.17.00222. PMID 28330936. 
  10. Walsh, Christopher (2017). Natural Product Biosynthesis: Chemical Logic and Enzymatic Machinery. Royal Society of Chemistry. pp. 270. ISBN 978-1788010764. 

Dewick, Paul (2009). Medicinal Natural Product A Biosynthetic Approach. Wiley. ISBN 978-0-470-74168-9. 

Michael, Denis; Hartmann, Kim; Bernsdorff, Friederike; Ajami-Rashidi, Ziba; Scholten, Nicola (May 2017). "Biochemical Principles and Functional Aspects of Pipecolic Acid Biosynthesis in Plant Immunity". Plant Physiology 174 (1): 124–153. doi:10.1104/pp.17.00222. PMID 28330936.