Chemistry:Geranylacetone

From HandWiki
Geranylacetone
Geranylacetone.png
Names
Preferred IUPAC name
(5E)-6,10-Dimethylundeca-5,9-dien-2-one
Other names
6,10-dimethyl-(5E)-5,9-undecadien-2-one, (E)-geranylacetone
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
EC Number
  • 223-269-8
UNII
Properties
C13H22O
Molar mass 194.318 g·mol−1
Density 0.8698 g/cm3 (20 °C)
Boiling point 126–8 °C (259–46 °F; 399–281 K) 10 mm Hg
Hazards
GHS pictograms GHS07: HarmfulGHS09: Environmental hazard
GHS Signal word Warning
H315, H411
P264, P273, P280, P302+352, P321, P332+313, P362, P391, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references

Geranylacetone is an organic compound with the formula CH3C(O)(CH2)2CH=C(CH3)(CH2)2CH=C(CH3)2. A colorless oil, it is the product of coupling geranyl and acetonyl groups. It is a precursor to synthetic squalene.[1]

Synthesis and occurrence

Geranylacetone can be produced by transesterification of ethyl acetoacetate with linalool:

EtOC(O)CH
2
C(O)CH
3
+ C
10
H
17
OH → C
10
H
17
OC(O)CH
2
C(O)CH
3
+ EtOH

The esterification of linalool can also be effected with ketene or isopropenyl methyl ether. The resulting linalyl ester undergoes Carroll rearrangement to give geranylacetone. Geranyl acetone is a precursor to isophytol, which is used in the manufacture of Vitamin E. Other derivatives of geranyl acetone are farnesol and nerolidol.[2]

Geranylacetone is a flavor component of many plants including rice, mango,[3] and tomatoes.

Together with other ketones, geranylacetone results from the degradation of vegetable matter by ozone.[4]

Biosynthesis

It arises by the oxidation of certain carotenoids. Such reaction are catalyzed by carotenoid oxygenase.[5]

References

  1. Eggersdorfer, Manfred (2000). "Ullmann's Encyclopedia of Industrial Chemistry". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a26_205. 
  2. Sell, Charles S. (2006). "Terpenoids". Kirk-Othmer Encyclopedia of Chemical Technology. doi:10.1002/0471238961.2005181602120504.a01.pub2. ISBN 0471238961. 
  3. Pino, Jorge A.; Mesa, Judith; Muñoz, Yamilie; Martí, M. Pilar; Marbot, Rolando (2005). "Volatile Components from Mango (Mangifera indica L.) Cultivars". Journal of Agricultural and Food Chemistry 53 (6): 2213–2223. doi:10.1021/jf0402633. PMID 15769159. 
  4. Fruekilde, P.; Hjorth, J.; Jensen, N.R.; Kotzias, D.; Larsen, B. (1998). "Ozonolysis at Vegetation Surfaces". Atmospheric Environment 32 (11): 1893–1902. doi:10.1016/S1352-2310(97)00485-8. 
  5. Simkin, Andrew J.; Schwartz, Steven H.; Auldridge, Michele; Taylor, Mark G.; Klee, Harry J. (2004). "The Tomato Carotenoid Cleavage Dioxygenase 1 Genes Contribute to the Formation of the Flavor Volatiles β-Ionone, Pseudoionone, and Geranylacetone". The Plant Journal 40 (6): 882–892. doi:10.1111/j.1365-313X.2004.02263.x. PMID 15584954.