Circle packing in a circle

From HandWiki
Short description: Two-dimensional packing problem

Circle packing in a circle is a two-dimensional packing problem with the objective of packing unit circles into the smallest possible larger circle.


Table of solutions, 1 ≤ n ≤ 20

If more than one equivalent solution exists, all are shown.[1]

Number of
unit circles
Enclosing circle radius Density Optimality Diagram
1 1 1.0000 Trivially optimal. Disk pack1.svg
2 2 0.5000 Trivially optimal. Disk pack2.svg
3 [math]\displaystyle{ 1+\frac{2}{\sqrt{3}} }[/math] ≈ 2.154... 0.6466... Trivially optimal. Disk pack3.svg
4 [math]\displaystyle{ 1+\sqrt{2} }[/math] ≈ 2.414... 0.6864... Trivially optimal. Disk pack4.svg
5 [math]\displaystyle{ 1+\sqrt{2\left(1+\frac{1}{\sqrt{5}}\right)} }[/math] ≈ 2.701... 0.6854... Proved optimal by Graham
(1968)[2]
Disk pack5.svg
6 3 0.6666... Proved optimal by Graham
(1968)[2]
Disk pack6.svg Disk pack6 2.svg
7 3 0.7777... Trivially optimal. Disk pack7.svg
8 [math]\displaystyle{ 1+\frac{1}{\sin\left(\frac{\pi}{7}\right)} }[/math] ≈ 3.304... 0.7328... Proved optimal by Pirl
(1969)[3]
Disk pack8.svg
9 [math]\displaystyle{ 1+\sqrt{2\left(2+\sqrt{2}\right)} }[/math] ≈ 3.613... 0.6895... Proved optimal by Pirl
(1969)[3]
Disk pack9.svg
10 3.813... 0.6878... Proved optimal by Pirl
(1969)[3]
Disk pack10.svg
11 [math]\displaystyle{ 1+\frac{1}{\sin\left(\frac{\pi}{9}\right)} }[/math] ≈ 3.923... 0.7148... Proved optimal by Melissen
(1994)[4]
Disk pack11.svg Disk pack11 2.svg
12 4.029... 0.7392... Proved optimal by Fodor
(2000)[5]
Disk pack12.svg
13 [math]\displaystyle{ 2 + \sqrt{5} }[/math] ≈ 4.236... 0.7245... Proved optimal by Fodor
(2003)[6]
Disk pack13.svg Disk pack13b.svg
14 4.328... 0.7474... Conjectured optimal by Goldberg
(1971).[7]
Disk pack14.svg
15 [math]\displaystyle{ 1 + \sqrt{6 + \frac{2}{\sqrt{5}} + 4 \sqrt{1 +\frac{2}{\sqrt{5}}}} }[/math] ≈ 4.521... 0.7339... Conjectured optimal by Pirl
(1969).[7]
Disk pack15.svg
16 4.615... 0.7512... Conjectured optimal by Goldberg
(1971).[7]
Disk pack16.svg
17 4.792... 0.7403... Conjectured optimal by Reis
(1975).[7]
Disk pack17.svg
18 [math]\displaystyle{ 1+\sqrt{2}+\sqrt{6} }[/math] ≈ 4.863... 0.7609... Conjectured optimal by Pirl (1969),
with additional arrangements by Graham, Lubachevsky, Nurmela, and Östergård (1998).[7]
Disk pack18.svg 90px
90px 90px
90px 90px
90px 90px
90px Disk pack18 7.svg
19 [math]\displaystyle{ 1+\sqrt{2}+\sqrt{6} }[/math] ≈ 4.863... 0.8032... Proved optimal by Fodor
(1999)[8]
Disk pack19.svg
20 5.122... 0.7623... Conjectured optimal by Goldberg (1971).[7] Disk pack20.svg

Special cases

Only 26 optimal packings are thought to be rigid (with no circles able to "rattle"). Numbers in bold are prime:

  • Proven for n = 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 19
  • Conjectured for n = 14, 15, 16, 17, 18, 22, 23, 27, 30, 31, 33, 37, 61, 91

Of these, solutions for n = 2, 3, 4, 7, 19, and 37 achieve a packing density greater than any smaller number > 1. (Higher density records all have rattles.)[9]

See also

References

  1. Friedman, Erich, "Circles in Circles", Erich's Packing Center, http://www2.stetson.edu/~efriedma/cirincir/ 
  2. 2.0 2.1 R.L. Graham, Sets of points with given minimum separation (Solution to Problem El921), Amer. Math. Monthly 75 (1968) 192-193.
  3. 3.0 3.1 3.2 U. Pirl, Der Mindestabstand von n in der Einheitskreisscheibe gelegenen Punkten, Mathematische Nachrichten 40 (1969) 111-124.
  4. H. Melissen, Densest packing of eleven congruent circles in a circle, Geometriae Dedicata 50 (1994) 15-25.
  5. F. Fodor, The Densest Packing of 12 Congruent Circles in a Circle, Beiträge zur Algebra und Geometrie, Contributions to Algebra and Geometry 41 (2000) ?, 401–409.
  6. F. Fodor, The Densest Packing of 13 Congruent Circles in a Circle, Beiträge zur Algebra und Geometrie, Contributions to Algebra and Geometry 44 (2003) 2, 431–440.
  7. 7.0 7.1 7.2 7.3 7.4 7.5 Graham RL, Lubachevsky BD, Nurmela KJ, Ostergard PRJ. Dense packings of congruent circles in a circle. Discrete Math 1998;181:139–154.
  8. F. Fodor, The Densest Packing of 19 Congruent Circles in a Circle, Geom. Dedicata 74 (1999), 139–145.
  9. Sloane, N. J. A., ed. "Sequence A084644". OEIS Foundation. https://oeis.org/A084644. 

External links