Circle packing in an isosceles right triangle

From HandWiki
Short description: Two-dimensional packing problem

Circle packing in a right isosceles triangle is a packing problem where the objective is to pack n unit circles into the smallest possible isosceles right triangle.

Minimum solutions (lengths shown are length of leg) are shown in the table below.[1] Solutions to the equivalent problem of maximizing the minimum distance between n points in an isosceles right triangle, were known to be optimal for n < 8[2] and were extended up to n = 10.[3]

In 2011 a heuristic algorithm found 18 improvements on previously known optima, the smallest of which was for n = 13.[4]

Number of circles Length
1 [math]\displaystyle{ 2 + \sqrt {2} }[/math] = 3.414...
2 [math]\displaystyle{ 2 \sqrt {2} }[/math] = 4.828...
3 [math]\displaystyle{ 4 + \sqrt {2} }[/math] = 5.414...
4 [math]\displaystyle{ 2 + 3\sqrt {2} }[/math] = 6.242...
5 [math]\displaystyle{ 4 + \sqrt {2} + \sqrt{3} }[/math] = 7.146...
6 [math]\displaystyle{ 6 + \sqrt {2} }[/math] = 7.414... 6 cirkloj en 45 45 90 triangulo.png
7 [math]\displaystyle{ 4 + \sqrt {2} + \sqrt {2 + 4 \sqrt{2}} }[/math] = 8.181...
8 [math]\displaystyle{ 2 + 3 \sqrt {2} + \sqrt{6} }[/math] = 8.692...
9 [math]\displaystyle{ 2 + 5 \sqrt {2} }[/math] = 9.071...
10 [math]\displaystyle{ 8 + \sqrt {2} }[/math] = 9.414...
11 [math]\displaystyle{ 5 + 3 \sqrt {2} + \dfrac {1} {3} \sqrt {6} }[/math] = 10.059...
12 10.422...
13 10.798...
14 [math]\displaystyle{ 2 + 3 \sqrt {2} + 2 \sqrt{6} }[/math] = 11.141...
15 [math]\displaystyle{ 10 + \sqrt {2} }[/math] = 11.414...

References

  1. Specht, Eckard (2011-03-11). "The best known packings of equal circles in an isosceles right triangle". http://hydra.nat.uni-magdeburg.de/packing/crt/crt.html. 
  2. Xu, Y. (1996). "On the minimum distance determined by n (≤ 7) points in an isoscele right triangle". Acta Mathematicae Applicatae Sinica 12 (2): 169–175. doi:10.1007/BF02007736. 
  3. Harayama, Tomohiro (2000). Optimal Packings of 8, 9, and 10 Equal Circles in an Isosceles Right Triangle (Thesis). Japan Advanced Institute of Science and Technology. hdl:10119/1422.
  4. López, C. O.; Beasley, J. E. (2011). "A heuristic for the circle packing problem with a variety of containers". European Journal of Operational Research 214 (3): 512. doi:10.1016/j.ejor.2011.04.024.