Cocountability
In mathematics, a cocountable subset of a set X is a subset Y whose complement in X is a countable set. In other words, Y contains all but countably many elements of X. While the rational numbers are a countable subset of the reals, for example, the irrational numbers are a cocountable subset of the reals. If the complement is finite, then one says Y is cofinite.
σ-algebras
The set of all subsets of X that are either countable or cocountable forms a σ-algebra, i.e., it is closed under the operations of countable unions, countable intersections, and complementation. This σ-algebra is the countable-cocountable algebra on X. It is the smallest σ-algebra containing every singleton set.
Topology
The cocountable topology (also called the "countable complement topology") on any set X consists of the empty set and all cocountable subsets of X.
This article does not cite any external source. HandWiki requires at least one external source. See citing external sources. (2021) (Learn how and when to remove this template message) |
Original source: https://en.wikipedia.org/wiki/Cocountability.
Read more |