Dickman function

From HandWiki
The Dickman–de Bruijn function ρ(u) plotted on a logarithmic scale. The horizontal axis is the argument u, and the vertical axis is the value of the function. The graph nearly makes a downward line on the logarithmic scale, demonstrating that the logarithm of the function is quasilinear.

In analytic number theory, the Dickman function or Dickman–de Bruijn function ρ is a special function used to estimate the proportion of smooth numbers up to a given bound. It was first studied by actuary Karl Dickman, who defined it in his only mathematical publication,[1] which is not easily available,[2] and later studied by the Dutch mathematician Nicolaas Govert de Bruijn.[3][4]

Definition

The Dickman–de Bruijn function [math]\displaystyle{ \rho(u) }[/math] is a continuous function that satisfies the delay differential equation

[math]\displaystyle{ u\rho'(u) + \rho(u-1) = 0\, }[/math]

with initial conditions [math]\displaystyle{ \rho(u) = 1 }[/math] for 0 ≤ u ≤ 1.

Properties

Dickman proved that, when [math]\displaystyle{ a }[/math] is fixed, we have

[math]\displaystyle{ \Psi(x, x^{1/a})\sim x\rho(a)\, }[/math]

where [math]\displaystyle{ \Psi(x,y) }[/math] is the number of y-smooth (or y-friable) integers below x.

Ramaswami later gave a rigorous proof that for fixed a, [math]\displaystyle{ \Psi(x,x^{1/a}) }[/math] was asymptotic to [math]\displaystyle{ x \rho(a) }[/math], with the error bound

[math]\displaystyle{ \Psi(x,x^{1/a})=x\rho(a)+O(x/\log x) }[/math]

in big O notation.[5]

Applications

The Dickman–de Bruijn used to calculate the probability that the largest and 2nd largest factor of x is less than x^a

The main purpose of the Dickman–de Bruijn function is to estimate the frequency of smooth numbers at a given size. This can be used to optimize various number-theoretical algorithms such as P-1 factoring and can be useful of its own right.

It can be shown using [math]\displaystyle{ \log\rho }[/math] that[6]

[math]\displaystyle{ \Psi(x,y)=xu^{O(-u)} }[/math]

which is related to the estimate [math]\displaystyle{ \rho(u)\approx u^{-u} }[/math] below.

The Golomb–Dickman constant has an alternate definition in terms of the Dickman–de Bruijn function.

Estimation

A first approximation might be [math]\displaystyle{ \rho(u)\approx u^{-u}.\, }[/math] A better estimate is[7]

[math]\displaystyle{ \rho(u)\sim \frac 1 {\xi\sqrt{2\pi u}} \cdot \exp(-u\xi+\operatorname{Ei}(\xi)) }[/math]

where Ei is the exponential integral and ξ is the positive root of

[math]\displaystyle{ e^\xi-1=u\xi.\, }[/math]

A simple upper bound is [math]\displaystyle{ \rho(x)\le1/x!. }[/math]

[math]\displaystyle{ u }[/math] [math]\displaystyle{ \rho(u) }[/math]
1 1
2 3.0685282×101
3 4.8608388×102
4 4.9109256×103
5 3.5472470×104
6 1.9649696×105
7 8.7456700×107
8 3.2320693×108
9 1.0162483×109
10 2.7701718×1011

Computation

For each interval [n − 1, n] with n an integer, there is an analytic function [math]\displaystyle{ \rho_n }[/math] such that [math]\displaystyle{ \rho_n(u)=\rho(u) }[/math]. For 0 ≤ u ≤ 1, [math]\displaystyle{ \rho(u) = 1 }[/math]. For 1 ≤ u ≤ 2, [math]\displaystyle{ \rho(u) = 1-\log u }[/math]. For 2 ≤ u ≤ 3,

[math]\displaystyle{ \rho(u) = 1-(1-\log(u-1))\log(u) + \operatorname{Li}_2(1 - u) + \frac{\pi^2}{12}. }[/math]

with Li2 the dilogarithm. Other [math]\displaystyle{ \rho_n }[/math] can be calculated using infinite series.[8]

An alternate method is computing lower and upper bounds with the trapezoidal rule;[7] a mesh of progressively finer sizes allows for arbitrary accuracy. For high precision calculations (hundreds of digits), a recursive series expansion about the midpoints of the intervals is superior.[9]

Extension

Friedlander defines a two-dimensional analog [math]\displaystyle{ \sigma(u,v) }[/math] of [math]\displaystyle{ \rho(u) }[/math].[10] This function is used to estimate a function [math]\displaystyle{ \Psi(x,y,z) }[/math] similar to de Bruijn's, but counting the number of y-smooth integers with at most one prime factor greater than z. Then

[math]\displaystyle{ \Psi(x,x^{1/a},x^{1/b})\sim x\sigma(b,a).\, }[/math]

See also

References

  1. Dickman, K. (1930). "On the frequency of numbers containing prime factors of a certain relative magnitude". Arkiv för Matematik, Astronomi och Fysik 22A (10): 1–14. Bibcode1930ArMAF..22A..10D. 
  2. Various (2012–2018). "nt.number theory - Reference request: Dickman, On the frequency of numbers containing prime factors". https://mathoverflow.net/questions/89362/reference-request-dickman-on-the-frequency-of-numbers-containing-prime-factors.  Discussion: an unsuccessful search for a source of Dickman's paper, and suggestions on several others on the topic.
  3. de Bruijn, N. G. (1951). "On the number of positive integers ≤ x and free of prime factors > y". Indagationes Mathematicae 13: 50–60. http://alexandria.tue.nl/repository/freearticles/597499.pdf. 
  4. de Bruijn, N. G. (1966). "On the number of positive integers ≤ x and free of prime factors > y, II". Indagationes Mathematicae 28: 239–247. http://alexandria.tue.nl/repository/freearticles/597534.pdf. 
  5. Ramaswami, V. (1949). "On the number of positive integers less than [math]\displaystyle{ x }[/math] and free of prime divisors greater than xc". Bulletin of the American Mathematical Society 55 (12): 1122–1127. doi:10.1090/s0002-9904-1949-09337-0. https://www.ams.org/bull/1949-55-12/S0002-9904-1949-09337-0/S0002-9904-1949-09337-0.pdf. 
  6. Hildebrand, A.; Tenenbaum, G. (1993). "Integers without large prime factors". Journal de théorie des nombres de Bordeaux 5 (2): 411–484. doi:10.5802/jtnb.101. http://archive.numdam.org/article/JTNB_1993__5_2_411_0.pdf. 
  7. 7.0 7.1 van de Lune, J.; Wattel, E. (1969). "On the Numerical Solution of a Differential-Difference Equation Arising in Analytic Number Theory". Mathematics of Computation 23 (106): 417–421. doi:10.1090/S0025-5718-1969-0247789-3. 
  8. Bach, Eric; Peralta, René (1996). "Asymptotic Semismoothness Probabilities". Mathematics of Computation 65 (216): 1701–1715. doi:10.1090/S0025-5718-96-00775-2. Bibcode1996MaCom..65.1701B. http://cr.yp.to/bib/1996/bach-semismooth.pdf. 
  9. Marsaglia, George; Zaman, Arif; Marsaglia, John C. W. (1989). "Numerical Solution of Some Classical Differential-Difference Equations". Mathematics of Computation 53 (187): 191–201. doi:10.1090/S0025-5718-1989-0969490-3. 
  10. Friedlander, John B. (1976). "Integers free from large and small primes". Proc. London Math. Soc. 33 (3): 565–576. doi:10.1112/plms/s3-33.3.565. 

Further reading

  • Broadhurst, David (2010). "Dickman polylogarithms and their constants". arXiv:1004.0519 [math-ph].
  • Soundararajan, Kannan (2012). "An asymptotic expansion related to the Dickman function". Ramanujan Journal 29 (1–3): 25–30. doi:10.1007/s11139-011-9304-3. 
  • Weisstein, Eric W.. "Dickman function". http://mathworld.wolfram.com/DickmanFunction.html.