Gödel logic

From HandWiki

In mathematical logic, a Gödel logic, sometimes referred to as Dummett logic or Gödel–Dummett logic,[1] is a member of a family of finite- or infinite-valued logics in which the sets of truth values V are closed subsets of the unit interval [0,1] containing both 0 and 1. Different such sets V in general determine different Gödel logics. The concept is named after Kurt Gödel.[2][3]

In 1959, Michael Dummett showed that infinite-valued propositional Gödel logic can be axiomatised by adding the axiom schema

(AB)(BA)

to intuitionistic propositional logic.[1][4]

See also

References