Holomorphic separability
From HandWiki
This article includes a list of references, related reading or external links, but its sources remain unclear because it lacks inline citations. (December 2009) (Learn how and when to remove this template message) |
In mathematics in complex analysis, the concept of holomorphic separability is a measure of the richness of the set of holomorphic functions on a complex manifold or complex-analytic space.
Formal definition
A complex manifold or complex space is said to be holomorphically separable, if whenever x ≠ y are two points in , there exists a holomorphic function , such that f(x) ≠ f(y).[1]
Often one says the holomorphic functions separate points.
Usage and examples
- All complex manifolds that can be mapped injectively into some are holomorphically separable, in particular, all domains in and all Stein manifolds.
- A holomorphically separable complex manifold is not compact unless it is discrete and finite.
- The condition is part of the definition of a Stein manifold.
References
- Kaup, Ludger; Kaup, Burchard (9 May 2011). Holomorphic Functions of Several Variables: An Introduction to the Fundamental Theory. Walter de Gruyter. ISBN 9783110838350. https://books.google.com/books?id=4YVXCgewhTIC.
- Narasimhan, Raghavan (1960). "Holomorphic mappings of complex spaces". Proceedings of the American Mathematical Society 11 (5): 800–804. doi:10.1090/S0002-9939-1960-0170034-8.
- Noguchi, Junjiro (2011). "Another Direct Proof of Oka's Theorem (Oka IX)". J. Math. Sci. Univ. Tokyo 19 (4). https://www.ms.u-tokyo.ac.jp/journal/pdf/jms190407.pdf.
- Remmert, Reinhold (1956). "Sur les espaces analytiques holomorphiquement séparables et holomorphiquement convexes" (in fr). Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences de Paris 243: 118–121. https://gallica.bnf.fr/ark:/12148/bpt6k3195v/f118.image.r.
- ↑ Grauert, Hans; Remmert, Reinhold (2004). Theory of Stein Spaces (Reprint of the 1979 ed.). Springer-Verlag. pp. 117. ISBN 3-540-00373-8.
