Increment theorem

From HandWiki

In nonstandard analysis, a field of mathematics, the increment theorem states the following: Suppose a function y = f(x) is differentiable at x and that Δx is infinitesimal. Then [math]\displaystyle{ \Delta y = f'(x)\,\Delta x + \varepsilon\, \Delta x }[/math] for some infinitesimal ε, where [math]\displaystyle{ \Delta y=f(x+\Delta x)-f(x). }[/math]

If [math]\displaystyle{ \Delta x \neq 0 }[/math] then we may write [math]\displaystyle{ \frac{\Delta y}{\Delta x} = f'(x) + \varepsilon, }[/math] which implies that [math]\displaystyle{ \frac{\Delta y}{\Delta x}\approx f'(x) }[/math], or in other words that [math]\displaystyle{ \frac{\Delta y}{\Delta x} }[/math] is infinitely close to [math]\displaystyle{ f'(x) }[/math], or [math]\displaystyle{ f'(x) }[/math] is the standard part of [math]\displaystyle{ \frac{\Delta y}{\Delta x} }[/math].

A similar theorem exists in standard Calculus. Again assume that y = f(x) is differentiable, but now let Δx be a nonzero standard real number. Then the same equation [math]\displaystyle{ \Delta y = f'(x)\,\Delta x + \varepsilon\, \Delta x }[/math] holds with the same definition of Δy, but instead of ε being infinitesimal, we have [math]\displaystyle{ \lim_{\Delta x \to 0} \varepsilon = 0 }[/math] (treating x and f as given so that ε is a function of Δx alone).

See also

References