Inverted snub dodecadodecahedron

From HandWiki
Short description: Polyhedron with 84 faces


Inverted snub dodecadodecahedron
Inverted snub dodecadodecahedron.png
Type Uniform star polyhedron
Elements F = 84, E = 150
V = 60 (χ = −6)
Faces by sides 60{3}+12{5}+12{5/2}
Wythoff symbol | 5/3 2 5
Symmetry group I, [5,3]+, 532
Index references U60, C76, W114
Dual polyhedron Medial inverted pentagonal hexecontahedron
Vertex figure Inverted snub dodecadodecahedron vertfig.png
3.3.5.3.5/3
Bowers acronym Isdid

File:Inverted snub dodecadodecahedron.stl In geometry, the inverted snub dodecadodecahedron (or vertisnub dodecadodecahedron) is a nonconvex uniform polyhedron, indexed as U60.[1] It is given a Schläfli symbol sr{5/3,5}.

Cartesian coordinates

Cartesian coordinates for the vertices of an inverted snub dodecadodecahedron are all the even permutations of [math]\displaystyle{ \begin{array}{crrrc} \Bigl(& \pm\,2\alpha\ ,& \pm\,2\ ,& \pm\,2\beta\ & \Bigr), \\[2pt] \Bigl(& \pm \bigl[\alpha+\frac{\beta}{\varphi} + \varphi\bigr],& \pm \bigl[-\alpha\varphi + \beta + \frac{1}{\varphi}\bigr],& \pm \bigl[\frac{\alpha}{\varphi} + \beta\varphi - 1\bigr] & \Bigr), \\[2pt] \Bigl(& \pm \bigl[-\frac{\alpha}{\varphi} + \beta\varphi + 1\bigr],& \pm \bigl[-\alpha + \frac{\beta}{\varphi} - \varphi\bigr],& \pm \bigl[\alpha\varphi + \beta - \frac{1}{\varphi}\bigr] & \Bigr), \\[2pt] \Bigl(& \pm \bigl[-\frac{\alpha}{\varphi} + \beta\varphi - 1\bigr],& \pm \bigl[\alpha - \frac{\beta}{\varphi} - \varphi\bigr],& \pm \bigl[\alpha\varphi + \beta + \frac{1}{\varphi}\bigr] & \Bigr), \\[2pt] \Bigl(& \pm \bigl[\alpha + \frac{\beta}{\varphi} - \varphi\bigr],& \pm \bigl[\alpha\varphi - \beta + \frac{1}{\varphi}\bigr],& \pm \bigl[\frac{\alpha}{\varphi} + \beta\varphi + 1\bigr] & \Bigr), \end{array} }[/math]

with an even number of plus signs, where [math]\displaystyle{ \beta = \frac{\ \ \frac{\alpha^2}{\varphi} + \varphi \ \ }{\ \alpha\varphi - \frac{1}{\varphi}}\ , }[/math] [math]\displaystyle{ \varphi = \tfrac{1+\sqrt 5}{2} }[/math] is the golden ratio, and α is the negative real root of [math]\displaystyle{ \varphi\alpha^4 - \alpha^3 + 2\alpha^2 - \alpha - \frac{1}{\varphi} \quad \implies \quad \alpha \approx -0.3352090. }[/math] Taking the odd permutations of the above coordinates with an odd number of plus signs gives another form, the enantiomorph of the other one. Taking α to be the positive root gives the snub dodecadodecahedron.

Related polyhedra

Medial inverted pentagonal hexecontahedron

Medial inverted pentagonal hexecontahedron
DU60 medial inverted pentagonal hexecontahedron.png
Type Star polyhedron
Face DU60 facets.png
Elements F = 60, E = 150
V = 84 (χ = −6)
Symmetry group I, [5,3]+, 532
Index references DU60
dual polyhedron Inverted snub dodecadodecahedron

File:Medial inverted pentagonal hexecontahedron.stl The medial inverted pentagonal hexecontahedron (or midly petaloid ditriacontahedron) is a nonconvex isohedral polyhedron. It is the dual of the uniform inverted snub dodecadodecahedron. Its faces are irregular nonconvex pentagons, with one very acute angle.

Proportions

Denote the golden ratio by [math]\displaystyle{ \phi }[/math], and let [math]\displaystyle{ \xi\approx -0.236\,993\,843\,45 }[/math] be the largest (least negative) real zero of the polynomial [math]\displaystyle{ P=8x^4-12x^3+5x+1 }[/math]. Then each face has three equal angles of [math]\displaystyle{ \arccos(\xi)\approx 103.709\,182\,219\,53^{\circ} }[/math], one of [math]\displaystyle{ \arccos(\phi^2\xi+\phi)\approx 3.990\,130\,423\,41^{\circ} }[/math] and one of [math]\displaystyle{ 360^{\circ}-\arccos(\phi^{-2}\xi-\phi^{-1})\approx 224.882\,322\,917\,99^{\circ} }[/math]. Each face has one medium length edge, two short and two long ones. If the medium length is [math]\displaystyle{ 2 }[/math], then the short edges have length [math]\displaystyle{ 1-\sqrt{\frac{1-\xi}{\phi^3-\xi}}\approx 0.474\,126\,460\,54, }[/math] and the long edges have length [math]\displaystyle{ 1+\sqrt{\frac{1-\xi}{\phi^{-3}-\xi}} \approx 37.551\,879\,448\,54. }[/math] The dihedral angle equals [math]\displaystyle{ \arccos(\xi/(\xi+1))\approx 108.095\,719\,352\,34^{\circ} }[/math]. The other real zero of the polynomial [math]\displaystyle{ P }[/math] plays a similar role for the medial pentagonal hexecontahedron.

See also

References

External links