Snub dodecadodecahedron

From HandWiki
Short description: Uniform star polyhedron with 84 faces


Snub dodecadodecahedron
Snub dodecadodecahedron.png
Type Uniform star polyhedron
Elements F = 84, E = 150
V = 60 (χ = −6)
Faces by sides 60{3}+12{5}+12{5/2}
Wythoff symbol | 2 5/2 5
Symmetry group I, [5,3]+, 532
Index references U40, C49, W111
Dual polyhedron Medial pentagonal hexecontahedron
Vertex figure Snub dodecadodecahedron vertfig.png
3.3.5/2.3.5
Bowers acronym Siddid

File:Snub dodecadodecahedron.stl

In geometry, the snub dodecadodecahedron is a nonconvex uniform polyhedron, indexed as U40. It has 84 faces (60 triangles, 12 pentagons, and 12 pentagrams), 150 edges, and 60 vertices.[1] It is given a Schläfli symbol sr{​52,5}, as a snub great dodecahedron.

Cartesian coordinates

Cartesian coordinates for the vertices of an inverted snub dodecadodecahedron are all the even permutations of [math]\displaystyle{ \begin{array}{crrrc} \Bigl(& \pm\,2\alpha\ ,& \pm\,2\ ,& \pm\,2\beta\ & \Bigr), \\[2pt] \Bigl(& \pm \bigl[\alpha+\frac{\beta}{\varphi} + \varphi\bigr],& \pm \bigl[-\alpha\varphi + \beta + \frac{1}{\varphi}\bigr],& \pm \bigl[\frac{\alpha}{\varphi} + \beta\varphi - 1\bigr] & \Bigr), \\[2pt] \Bigl(& \pm \bigl[-\frac{\alpha}{\varphi} + \beta\varphi + 1\bigr],& \pm \bigl[-\alpha + \frac{\beta}{\varphi} - \varphi\bigr],& \pm \bigl[\alpha\varphi + \beta - \frac{1}{\varphi}\bigr] & \Bigr), \\[2pt] \Bigl(& \pm \bigl[-\frac{\alpha}{\varphi} + \beta\varphi - 1\bigr],& \pm \bigl[\alpha - \frac{\beta}{\varphi} - \varphi\bigr],& \pm \bigl[\alpha\varphi + \beta + \frac{1}{\varphi}\bigr] & \Bigr), \\[2pt] \Bigl(& \pm \bigl[\alpha + \frac{\beta}{\varphi} - \varphi\bigr],& \pm \bigl[\alpha\varphi - \beta + \frac{1}{\varphi}\bigr],& \pm \bigl[\frac{\alpha}{\varphi} + \beta\varphi + 1\bigr] & \Bigr), \end{array} }[/math]

with an even number of plus signs, where [math]\displaystyle{ \beta = \frac{\ \ \frac{\alpha^2}{\varphi} + \varphi \ \ }{\ \alpha\varphi - \frac{1}{\varphi}}\ , }[/math] [math]\displaystyle{ \varphi = \tfrac{1+\sqrt 5}{2} }[/math] is the golden ratio, and α is the positive real root of [math]\displaystyle{ \varphi\alpha^4 - \alpha^3 + 2\alpha^2 - \alpha - \frac{1}{\varphi} \quad \implies \quad \alpha \approx 0.7964421. }[/math] Taking the odd permutations of the above coordinates with an odd number of plus signs gives another form, the enantiomorph of the other one. Taking α to be the negative root gives the inverted snub dodecadodecahedron.

Related polyhedra

Medial pentagonal hexecontahedron

Medial pentagonal hexecontahedron
DU40 medial pentagonal hexecontahedron.png
Type Star polyhedron
Face DU40 facets.png
Elements F = 60, E = 150
V = 84 (χ = −6)
Symmetry group I, [5,3]+, 532
Index references DU40
dual polyhedron Snub dodecadodecahedron

File:Medial pentagonal hexecontahedron.stl The medial pentagonal hexecontahedron is a nonconvex isohedral polyhedron. It is the dual of the snub dodecadodecahedron. It has 60 intersecting irregular pentagonal faces.

See also

References

External links