J-homomorphism
In mathematics, the J-homomorphism is a mapping from the homotopy groups of the special orthogonal groups to the homotopy groups of spheres. It was defined by George W. Whitehead (1942), extending a construction of Heinz Hopf (1935).
Definition
Whitehead's original homomorphism is defined geometrically, and gives a homomorphism
- [math]\displaystyle{ J \colon \pi_r (\mathrm{SO}(q)) \to \pi_{r+q}(S^q) }[/math]
of abelian groups for integers q, and [math]\displaystyle{ r \ge 2 }[/math]. (Hopf defined this for the special case [math]\displaystyle{ q = r+1 }[/math].)
The J-homomorphism can be defined as follows. An element of the special orthogonal group SO(q) can be regarded as a map
- [math]\displaystyle{ S^{q-1}\rightarrow S^{q-1} }[/math]
and the homotopy group [math]\displaystyle{ \pi_r(\operatorname{SO}(q)) }[/math]) consists of homotopy classes of maps from the r-sphere to SO(q). Thus an element of [math]\displaystyle{ \pi_r(\operatorname{SO}(q)) }[/math] can be represented by a map
- [math]\displaystyle{ S^r\times S^{q-1}\rightarrow S^{q-1} }[/math]
Applying the Hopf construction to this gives a map
- [math]\displaystyle{ S^{r+q}= S^r*S^{q-1}\rightarrow S( S^{q-1}) =S^q }[/math]
in [math]\displaystyle{ \pi_{r+q}(S^q) }[/math], which Whitehead defined as the image of the element of [math]\displaystyle{ \pi_r(\operatorname{SO}(q)) }[/math] under the J-homomorphism.
Taking a limit as q tends to infinity gives the stable J-homomorphism in stable homotopy theory:
- [math]\displaystyle{ J \colon \pi_r(\mathrm{SO}) \to \pi_r^S , }[/math]
where [math]\displaystyle{ \mathrm{SO} }[/math] is the infinite special orthogonal group, and the right-hand side is the r-th stable stem of the stable homotopy groups of spheres.
Image of the J-homomorphism
The image of the J-homomorphism was described by Frank Adams (1966), assuming the Adams conjecture of (Adams 1963) which was proved by Daniel Quillen (1971), as follows. The group [math]\displaystyle{ \pi_r(\operatorname{SO}) }[/math] is given by Bott periodicity. It is always cyclic; and if r is positive, it is of order 2 if r is 0 or 1 modulo 8, infinite if r is 3 or 7 modulo 8, and order 1 otherwise (Switzer 1975). In particular the image of the stable J-homomorphism is cyclic. The stable homotopy groups [math]\displaystyle{ \pi_r^S }[/math] are the direct sum of the (cyclic) image of the J-homomorphism, and the kernel of the Adams e-invariant (Adams 1966), a homomorphism from the stable homotopy groups to [math]\displaystyle{ \Q/\Z }[/math]. If r is 0 or 1 mod 8 and positive, the order of the image is 2 (so in this case the J-homomorphism is injective). If r is 3 or 7 mod 8, the image is a cyclic group of order equal to the denominator of [math]\displaystyle{ B_{2n}/4n }[/math], where [math]\displaystyle{ B_{2n} }[/math] is a Bernoulli number. In the remaining cases where r is 2, 4, 5, or 6 mod 8 the image is trivial because [math]\displaystyle{ \pi_r(\operatorname{SO}) }[/math] is trivial.
r 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 [math]\displaystyle{ \pi_r(\operatorname{SO}) }[/math] 1 2 1 [math]\displaystyle{ \Z }[/math] 1 1 1 [math]\displaystyle{ \Z }[/math] 2 2 1 [math]\displaystyle{ \Z }[/math] 1 1 1 [math]\displaystyle{ \Z }[/math] 2 2 [math]\displaystyle{ |\operatorname{im}(J)| }[/math] 1 2 1 24 1 1 1 240 2 2 1 504 1 1 1 480 2 2 [math]\displaystyle{ \pi_r^S }[/math] [math]\displaystyle{ \Z }[/math] 2 2 24 1 1 2 240 22 23 6 504 1 3 22 480×2 22 24 [math]\displaystyle{ B_{2n} }[/math] 1⁄6 −1⁄30 1⁄42 −1⁄30
Applications
Michael Atiyah (1961) introduced the group J(X) of a space X, which for X a sphere is the image of the J-homomorphism in a suitable dimension.
The cokernel of the J-homomorphism [math]\displaystyle{ J \colon \pi_n(\mathrm{SO}) \to \pi_n^S }[/math] appears in the group Θn of h-cobordism classes of oriented homotopy n-spheres ((Kosinski 1992)).
References
- Atiyah, Michael Francis (1961), "Thom complexes", Proceedings of the London Mathematical Society, Third Series 11: 291–310, doi:10.1112/plms/s3-11.1.291
- Adams, J. F. (1963), "On the groups J(X) I", Topology 2 (3): 181, doi:10.1016/0040-9383(63)90001-6
- Adams, J. F. (1965a), "On the groups J(X) II", Topology 3 (2): 137, doi:10.1016/0040-9383(65)90040-6
- Adams, J. F. (1965b), "On the groups J(X) III", Topology 3 (3): 193, doi:10.1016/0040-9383(65)90054-6
- Adams, J. F. (1966), "On the groups J(X) IV", Topology 5: 21, doi:10.1016/0040-9383(66)90004-8. "Correction", Topology 7 (3): 331, 1968, doi:10.1016/0040-9383(68)90010-4
- Hopf, Heinz (1935), "Über die Abbildungen von Sphären auf Sphäre niedrigerer Dimension", Fundamenta Mathematicae 25: 427–440, http://matwbn.icm.edu.pl/tresc.php?wyd=1&tom=25
- Kosinski, Antoni A. (1992), Differential Manifolds, San Diego, CA: Academic Press, pp. 195ff, ISBN 0-12-421850-4, https://archive.org/details/differentialmani0000kosi/page/195
- Milnor, John W. (2011), "Differential topology forty-six years later", Notices of the American Mathematical Society 58 (6): 804–809, https://www.ams.org/notices/201106/rtx110600804p.pdf
- Quillen, Daniel (1971), "The Adams conjecture", Topology 10: 67–80, doi:10.1016/0040-9383(71)90018-8
- Switzer, Robert M. (1975), Algebraic Topology—Homotopy and Homology, Springer-Verlag, ISBN 978-0-387-06758-2
- Whitehead, George W. (1942), "On the homotopy groups of spheres and rotation groups", Annals of Mathematics, Second Series 43 (4): 634–640, doi:10.2307/1968956
- Whitehead, George W. (1978), Elements of homotopy theory, Berlin: Springer, ISBN 0-387-90336-4
Original source: https://en.wikipedia.org/wiki/J-homomorphism.
Read more |