Kaniadakis Weibull distribution

From HandWiki
Short description: Continuous probability distribution
κ-Weibull distribution
Probability density function
Cumulative distribution function
Parameters 0<κ<1
α>0 rate shape (real)
β>0 rate (real)
Support x[0,+)
PDF αβxα11+κ2β2x2αexpκ(βxα)
CDF 1expκ(βxα)
Quantile β1/α[lnκ(11Fκ)]1/α
Median β1/α(lnκ(2))1/α
Mode β1/α(α2+2κ2(α1)2κ2(α2κ2)1+4κ2(α2κ2)(α1)2[α2+2κ2(α1)]21)1/2α

The Kaniadakis Weibull distribution (or κ-Weibull distribution) is a probability distribution arising as a generalization of the Weibull distribution.[1][2] It is one example of a Kaniadakis κ-distribution. The κ-Weibull distribution has been adopted successfully for describing a wide variety of complex systems in seismology, economy, epidemiology, among many others.

Definitions

Probability density function

The Kaniadakis κ-Weibull distribution is exhibits power-law right tails, and it has the following probability density function:[3]

fκ(x)=αβxα11+κ2β2x2αexpκ(βxα)

valid for x0, where |κ|<1 is the entropic index associated with the Kaniadakis entropy, β>0 is the scale parameter, and α>0 is the shape parameter or Weibull modulus.

The Weibull distribution is recovered as κ0.

Cumulative distribution function

The cumulative distribution function of κ-Weibull distribution is given by

Fκ(x)=1expκ(βxα)

valid for

x0

. The cumulative Weibull distribution is recovered in the classical limit

κ0

.

Survival distribution and hazard functions

The survival distribution function of κ-Weibull distribution is given by

Sκ(x)=expκ(βxα)

valid for x0. The survival Weibull distribution is recovered in the classical limit κ0.

Comparison between the Kaniadakis κ-Weibull probability function and its cumulative.

The hazard function of the κ-Weibull distribution is obtained through the solution of the κ-rate equation:

Sκ(x)dx=hκSκ(x)

with

Sκ(0)=1

, where

hκ

is the hazard function:

hκ=αβxα11+κ2β2x2α

The cumulative κ-Weibull distribution is related to the κ-hazard function by the following expression:

Sκ=eHκ(x)

where

Hκ(x)=0xhκ(z)dz
Hκ(x)=1κarcsinh(κβxα)

is the cumulative κ-hazard function. The cumulative hazard function of the Weibull distribution is recovered in the classical limit κ0: H(x)=βxα .

Properties

Moments, median and mode

The κ-Weibull distribution has moment of order m given by

E[Xm]=|2κβ|m/α1+κmαΓ(12κm2α)Γ(12κ+m2α)Γ(1+mα)

The median and the mode are:

xmedian(Fκ)=β1/α(lnκ(2))1/α
xmode=β1/α(α2+2κ2(α1)2κ2(α2κ2))1/2α(1+4κ2(α2κ2)(α1)2[α2+2κ2(α1)]21)1/2α(α>1)

Quantiles

The quantiles are given by the following expression

xquantile(Fκ)=β1/α[lnκ(11Fκ)]1/α

with

0Fκ1

.

Gini coefficient

The Gini coefficient is:[3]

Gκ=1α+κα+12κΓ(1κ12α)Γ(1κ+12α)Γ(12κ+12α)Γ(12κ12α)

Asymptotic behavior

The κ-Weibull distribution II behaves asymptotically as follows:[3]

limx+fκ(x)ακ(2κβ)1/κx1α/κ
limx0+fκ(x)=αβxα1

Applications

The κ-Weibull distribution has been applied in several areas, such as:

  • In economy, for analyzing personal income models, in order to accurately describing simultaneously the income distribution among the richest part and the great majority of the population.[1][4][5]
  • In seismology, the κ-Weibull represents the statistical distribution of magnitude of the earthquakes distributed across the Earth, generalizing the Gutenberg–Richter law,[6] and the interval distributions of seismic data, modeling extreme-event return intervals.[7][8]
  • In epidemiology, the κ-Weibull distribution presents a universal feature for epidemiological analysis.[9]

See also

References

  1. 1.0 1.1 Clementi, F.; Gallegati, M.; Kaniadakis, G. (2007). "κ-generalized statistics in personal income distribution" (in en). The European Physical Journal B 57 (2): 187–193. doi:10.1140/epjb/e2007-00120-9. ISSN 1434-6028. Bibcode2007EPJB...57..187C. http://link.springer.com/10.1140/epjb/e2007-00120-9. 
  2. Clementi, F.; Di Matteo, T.; Gallegati, M.; Kaniadakis, G. (2008). "The -generalized distribution: A new descriptive model for the size distribution of incomes" (in en). Physica A: Statistical Mechanics and Its Applications 387 (13): 3201–3208. doi:10.1016/j.physa.2008.01.109. https://linkinghub.elsevier.com/retrieve/pii/S0378437108001349. 
  3. 3.0 3.1 3.2 Kaniadakis, G. (2021-01-01). "New power-law tailed distributions emerging in κ-statistics (a)". Europhysics Letters 133 (1): 10002. doi:10.1209/0295-5075/133/10002. ISSN 0295-5075. Bibcode2021EL....13310002K. https://iopscience.iop.org/article/10.1209/0295-5075/133/10002. 
  4. Clementi, Fabio; Gallegati, Mauro; Kaniadakis, Giorgio (October 2010). "A model of personal income distribution with application to Italian data" (in en). Empirical Economics 39 (2): 559–591. doi:10.1007/s00181-009-0318-2. ISSN 0377-7332. http://link.springer.com/10.1007/s00181-009-0318-2. 
  5. Clementi, F; Gallegati, M; Kaniadakis, G (2012-12-06). "A generalized statistical model for the size distribution of wealth". Journal of Statistical Mechanics: Theory and Experiment 2012 (12): P12006. doi:10.1088/1742-5468/2012/12/P12006. ISSN 1742-5468. Bibcode2012JSMTE..12..006C. https://iopscience.iop.org/article/10.1088/1742-5468/2012/12/P12006. 
  6. da Silva, Sérgio Luiz E.F. (2021). "κ -generalised Gutenberg–Richter law and the self-similarity of earthquakes" (in en). Chaos, Solitons & Fractals 143: 110622. doi:10.1016/j.chaos.2020.110622. Bibcode2021CSF...14310622D. https://linkinghub.elsevier.com/retrieve/pii/S0960077920310134. 
  7. Hristopulos, Dionissios T.; Petrakis, Manolis P.; Kaniadakis, Giorgio (2014-05-28). "Finite-size effects on return interval distributions for weakest-link-scaling systems" (in en). Physical Review E 89 (5): 052142. doi:10.1103/PhysRevE.89.052142. ISSN 1539-3755. PMID 25353774. Bibcode2014PhRvE..89e2142H. https://link.aps.org/doi/10.1103/PhysRevE.89.052142. 
  8. Hristopulos, Dionissios; Petrakis, Manolis; Kaniadakis, Giorgio (2015-03-09). "Weakest-Link Scaling and Extreme Events in Finite-Sized Systems" (in en). Entropy 17 (3): 1103–1122. doi:10.3390/e17031103. ISSN 1099-4300. Bibcode2015Entrp..17.1103H. 
  9. Kaniadakis, Giorgio; Baldi, Mauro M.; Deisboeck, Thomas S.; Grisolia, Giulia; Hristopulos, Dionissios T.; Scarfone, Antonio M.; Sparavigna, Amelia; Wada, Tatsuaki et al. (2020). "The κ-statistics approach to epidemiology" (in en). Scientific Reports 10 (1): 19949. doi:10.1038/s41598-020-76673-3. ISSN 2045-2322. PMID 33203913. Bibcode2020NatSR..1019949K.