Kuratowski closure axioms
In topology and related branches of mathematics, the Kuratowski closure axioms are a set of axioms that can be used to define a topological structure on a set. They are equivalent to the more commonly used open set definition. They were first formalized by Kazimierz Kuratowski,[1] and the idea was further studied by mathematicians such as Wacław Sierpiński and António Monteiro,[2] among others. A similar set of axioms can be used to define a topological structure using only the dual notion of interior operator.[3]
Definition
Kuratowski closure operators and weakenings
Let [math]\displaystyle{ X }[/math] be an arbitrary set and [math]\displaystyle{ \wp(X) }[/math] its power set. A Kuratowski closure operator is a unary operation [math]\displaystyle{ \mathbf{c}:\wp(X) \to \wp(X) }[/math] with the following properties:
[K1] It preserves the empty set: [math]\displaystyle{ \mathbf{c}(\varnothing) = \varnothing }[/math];[K2] It is extensive: for all [math]\displaystyle{ A \subseteq X }[/math], [math]\displaystyle{ A \subseteq \mathbf{c}(A) }[/math];
[K3] It is idempotent: for all [math]\displaystyle{ A \subseteq X }[/math], [math]\displaystyle{ \mathbf{c}(A) = \mathbf{c}(\mathbf{c}(A)) }[/math];
[K4] It preserves/distributes over binary unions: for all [math]\displaystyle{ A,B \subseteq X }[/math], [math]\displaystyle{ \mathbf{c}(A \cup B) = \mathbf{c}(A) \cup \mathbf{c}(B) }[/math].
A consequence of [math]\displaystyle{ \mathbf{c} }[/math] preserving binary unions is the following condition:[4]
[K4'] It is monotone: [math]\displaystyle{ A \subseteq B \Rightarrow \mathbf{c}(A) \subseteq \mathbf{c}(B) }[/math].
In fact if we rewrite the equality in [K4] as an inclusion, giving the weaker axiom [K4''] (subadditivity):
[K4''] It is subadditive: for all [math]\displaystyle{ A,B \subseteq X }[/math], [math]\displaystyle{ \mathbf{c}(A \cup B) \subseteq \mathbf{c}(A) \cup \mathbf{c}(B) }[/math],
then it is easy to see that axioms [K4'] and [K4''] together are equivalent to [K4] (see the next-to-last paragraph of Proof 2 below).
Kuratowski (1966) includes a fifth (optional) axiom requiring that singleton sets should be stable under closure: for all [math]\displaystyle{ x \in X }[/math], [math]\displaystyle{ \mathbf{c}(\{x\}) = \{x\} }[/math]. He refers to topological spaces which satisfy all five axioms as T1-spaces in contrast to the more general spaces which only satisfy the four listed axioms. Indeed, these spaces correspond exactly to the topological T1-spaces via the usual correspondence (see below).[5]
If requirement [K3] is omitted, then the axioms define a Čech closure operator.[6] If [K1] is omitted instead, then an operator satisfying [K2], [K3] and [K4'] is said to be a Moore closure operator.[7] A pair [math]\displaystyle{ (X, \mathbf{c}) }[/math] is called Kuratowski, Čech or Moore closure space depending on the axioms satisfied by [math]\displaystyle{ \mathbf{c} }[/math].
Alternative axiomatizations
The four Kuratowski closure axioms can be replaced by a single condition, given by Pervin:[8]
[P] For all [math]\displaystyle{ A,B \subseteq X }[/math], [math]\displaystyle{ A \cup \mathbf{c}(A) \cup \mathbf{c}(\mathbf{c}(B)) = \mathbf{c}(A \cup B) \setminus \mathbf{c}(\varnothing) }[/math].
Axioms [K1]–[K4] can be derived as a consequence of this requirement:
- Choose [math]\displaystyle{ A = B = \varnothing }[/math]. Then [math]\displaystyle{ \varnothing \cup \mathbf{c}(\varnothing) \cup \mathbf{c}(\mathbf{c}(\varnothing)) = \mathbf{c}(\varnothing) \setminus \mathbf{c}(\varnothing) = \varnothing }[/math], or [math]\displaystyle{ \mathbf{c}(\varnothing) \cup \mathbf{c}(\mathbf{c}(\varnothing)) = \varnothing }[/math]. This immediately implies [K1].
- Choose an arbitrary [math]\displaystyle{ A \subseteq X }[/math] and [math]\displaystyle{ B = \varnothing }[/math]. Then, applying axiom [K1], [math]\displaystyle{ A \cup \mathbf{c}(A) = \mathbf{c}(A) }[/math], implying [K2].
- Choose [math]\displaystyle{ A = \varnothing }[/math] and an arbitrary [math]\displaystyle{ B \subseteq X }[/math]. Then, applying axiom [K1], [math]\displaystyle{ \mathbf{c}(\mathbf{c}(B)) = \mathbf{c}(B) }[/math], which is [K3].
- Choose arbitrary [math]\displaystyle{ A,B \subseteq X }[/math]. Applying axioms [K1]–[K3], one derives [K4].
Alternatively, Monteiro (1945) had proposed a weaker axiom that only entails [K2]–[K4]:[9]
[M] For all [math]\displaystyle{ A,B \subseteq X }[/math], [math]\displaystyle{ A \cup \mathbf{c}(A)\cup \mathbf{c}(\mathbf{c}(B)) \subseteq \mathbf{c}(A \cup B) }[/math].
Requirement [K1] is independent of [M] : indeed, if [math]\displaystyle{ X \neq \varnothing }[/math], the operator [math]\displaystyle{ \mathbf{c}^\star : \wp(X) \to \wp(X) }[/math] defined by the constant assignment [math]\displaystyle{ A \mapsto \mathbf{c}^\star(A) := X }[/math] satisfies [M] but does not preserve the empty set, since [math]\displaystyle{ \mathbf{c}^\star(\varnothing) = X }[/math]. Notice that, by definition, any operator satisfying [M] is a Moore closure operator.
A more symmetric alternative to [M] was also proven by M. O. Botelho and M. H. Teixeira to imply axioms [K2]–[K4]:[2]
[BT] For all [math]\displaystyle{ A,B \subseteq X }[/math], [math]\displaystyle{ A \cup B \cup \mathbf{c}(\mathbf{c}(A)) \cup \mathbf{c}(\mathbf{c}(B)) = \mathbf{c}(A \cup B) }[/math].
Analogous structures
Interior, exterior and boundary operators
A dual notion to Kuratowski closure operators is that of Kuratowski interior operator, which is a map [math]\displaystyle{ \mathbf{i} : \wp(X) \to \wp(X) }[/math] satisfying the following similar requirements:[3]
[I1] It preserves the total space: [math]\displaystyle{ \mathbf{i}(X) = X }[/math];[I2] It is intensive: for all [math]\displaystyle{ A \subseteq X }[/math], [math]\displaystyle{ \mathbf{i}(A) \subseteq A }[/math];
[I3] It is idempotent: for all [math]\displaystyle{ A \subseteq X }[/math], [math]\displaystyle{ \mathbf{i}(\mathbf{i}(A)) = \mathbf{i}(A) }[/math];
[I4] It preserves binary intersections: for all [math]\displaystyle{ A,B \subseteq X }[/math], [math]\displaystyle{ \mathbf{i}(A \cap B) = \mathbf{i}(A) \cap \mathbf{i}(B) }[/math].
For these operators, one can reach conclusions that are completely analogous to what was inferred for Kuratowski closures. For example, all Kuratowski interior operators are isotonic, i.e. they satisfy [K4'], and because of intensivity [I2], it is possible to weaken the equality in [I3] to a simple inclusion.
The duality between Kuratowski closures and interiors is provided by the natural complement operator on [math]\displaystyle{ \wp(X) }[/math], the map [math]\displaystyle{ \mathbf{n} : \wp(X) \to \wp(X) }[/math] sending [math]\displaystyle{ A \mapsto \mathbf{n}(A):= X \setminus A }[/math]. This map is an orthocomplementation on the power set lattice, meaning it satisfies De Morgan's laws: if [math]\displaystyle{ \mathcal{I} }[/math] is an arbitrary set of indices and [math]\displaystyle{ \{A_i\}_{i\in\mathcal I} \subseteq \wp(X) }[/math], [math]\displaystyle{ \mathbf{n}\left(\bigcup_{i \in \mathcal I} A_i\right) = \bigcap_{i\in \mathcal I} \mathbf{n}(A_i), \qquad \mathbf{n}\left(\bigcap_{i \in \mathcal I} A_i\right) = \bigcup_{i\in \mathcal I} \mathbf{n}(A_i). }[/math]
By employing these laws, together with the defining properties of [math]\displaystyle{ \mathbf{n} }[/math], one can show that any Kuratowski interior induces a Kuratowski closure (and vice versa), via the defining relation [math]\displaystyle{ \mathbf {c} := \mathbf{nin} }[/math] (and [math]\displaystyle{ \mathbf {i} := \mathbf{ncn} }[/math]). Every result obtained concerning [math]\displaystyle{ \mathbf{c} }[/math] may be converted into a result concerning [math]\displaystyle{ \mathbf{i} }[/math] by employing these relations in conjunction with the properties of the orthocomplementation [math]\displaystyle{ \mathbf{n} }[/math].
Pervin (1964) further provides analogous axioms for Kuratowski exterior operators[3] and Kuratowski boundary operators,[10] which also induce Kuratowski closures via the relations [math]\displaystyle{ \mathbf{c} := \mathbf{ne} }[/math] and [math]\displaystyle{ \mathbf{c}(A):= A \cup \mathbf{b}(A) }[/math].
Abstract operators
Notice that axioms [K1]–[K4] may be adapted to define an abstract unary operation [math]\displaystyle{ \mathbf c : L \to L }[/math] on a general bounded lattice [math]\displaystyle{ (L,\land,\lor,\mathbf 0, \mathbf 1) }[/math], by formally substituting set-theoretic inclusion with the partial order associated to the lattice, set-theoretic union with the join operation, and set-theoretic intersections with the meet operation; similarly for axioms [I1]–[I4]. If the lattice is orthocomplemented, these two abstract operations induce one another in the usual way. Abstract closure or interior operators can be used to define a generalized topology on the lattice.
Since neither unions nor the empty set appear in the requirement for a Moore closure operator, the definition may be adapted to define an abstract unary operator [math]\displaystyle{ \mathbf{c} : S \to S }[/math] on an arbitrary poset [math]\displaystyle{ S }[/math].
Connection to other axiomatizations of topology
Induction of topology from closure
A closure operator naturally induces a topology as follows. Let [math]\displaystyle{ X }[/math] be an arbitrary set. We shall say that a subset [math]\displaystyle{ C\subseteq X }[/math] is closed with respect to a Kuratowski closure operator [math]\displaystyle{ \mathbf{c} : \wp(X) \to \wp(X) }[/math] if and only if it is a fixed point of said operator, or in other words it is stable under [math]\displaystyle{ \mathbf{c} }[/math], i.e. [math]\displaystyle{ \mathbf{c}(C) = C }[/math]. The claim is that the family of all subsets of the total space that are complements of closed sets satisfies the three usual requirements for a topology, or equivalently, the family [math]\displaystyle{ \mathfrak{S}[\mathbf{c}] }[/math] of all closed sets satisfies the following:
[T1] It is a bounded sublattice of [math]\displaystyle{ \wp(X) }[/math], i.e. [math]\displaystyle{ X,\varnothing \in\mathfrak{S}[\mathbf{c}] }[/math];[T2] It is complete under arbitrary intersections, i.e. if [math]\displaystyle{ \mathcal{I} }[/math] is an arbitrary set of indices and [math]\displaystyle{ \{C_i\}_{i\in\mathcal I} \subseteq \mathfrak{S}[\mathbf{c}] }[/math], then [math]\displaystyle{ \bigcap_{i\in\mathcal I} C_i \in \mathfrak{S}[\mathbf{c}] }[/math];
[T3] It is complete under finite unions, i.e. if [math]\displaystyle{ \mathcal{I} }[/math] is a finite set of indices and [math]\displaystyle{ \{C_i\}_{i\in\mathcal I} \subseteq \mathfrak{S}[\mathbf{c}] }[/math], then [math]\displaystyle{ \bigcup_{i\in\mathcal I} C_i \in \mathfrak{S}[\mathbf{c}] }[/math].
Notice that, by idempotency [K3], one may succinctly write [math]\displaystyle{ \mathfrak{S}[\mathbf{c}] = \operatorname{im}(\mathbf{c}) }[/math].
Proof 1.
|
---|
[T1] By extensivity [K2], [math]\displaystyle{ X\subseteq\mathbf{c}(X) }[/math] and since closure maps the power set of [math]\displaystyle{ X }[/math] into itself (that is, the image of any subset is a subset of [math]\displaystyle{ X }[/math]), [math]\displaystyle{ \mathbf{c}(X)\subseteq X }[/math] we have [math]\displaystyle{ X = \mathbf{c}(X) }[/math]. Thus [math]\displaystyle{ X \in \mathfrak{S}[\mathbf{c}] }[/math]. The preservation of the empty set [K1] readily implies [math]\displaystyle{ \varnothing \in\mathfrak{S}[\mathbf{c}] }[/math]. [T2] Next, let [math]\displaystyle{ \mathcal{I} }[/math] be an arbitrary set of indices and let [math]\displaystyle{ C_i }[/math] be closed for every [math]\displaystyle{ i\in\mathcal{I} }[/math]. By extensivity [K2], [math]\displaystyle{ \bigcap_{i\in\mathcal{I}}C_i \subseteq \mathbf{c}\left(\bigcap_{i\in\mathcal{I}}C_i\right) }[/math]. Also, by isotonicity [K4'], if [math]\displaystyle{ \bigcap_{i\in\mathcal I} C_i \subseteq C_i }[/math]for all indices [math]\displaystyle{ i \in \mathcal I }[/math], then [math]\displaystyle{ \mathbf{c}\left(\bigcap_{i\in\mathcal{I}}C_i \right) \subseteq \mathbf{c}(C_i) = C_i }[/math] for all [math]\displaystyle{ i \in \mathcal I }[/math], which implies [math]\displaystyle{ \mathbf{c}\left(\bigcap_{i\in\mathcal{I}}C_i \right) \subseteq \bigcap_{i\in\mathcal{I}}C_i }[/math]. Therefore, [math]\displaystyle{ \bigcap_{i\in\mathcal{I}}C_i = \mathbf{c}\left(\bigcap_{i\in\mathcal{I}}C_i\right) }[/math], meaning [math]\displaystyle{ \bigcap_{i\in\mathcal{I}}C_i \in \mathfrak{S}[\mathbf{c}] }[/math]. [T3] Finally, let [math]\displaystyle{ \mathcal{I} }[/math] be a finite set of indices and let [math]\displaystyle{ C_i }[/math] be closed for every [math]\displaystyle{ i\in\mathcal{I} }[/math]. From the preservation of binary unions [K4], and using induction on the number of subsets of which we take the union, we have [math]\displaystyle{ \bigcup_{i\in\mathcal{I}}C_i = \mathbf{c}\left(\bigcup_{i\in\mathcal{I}}C_i \right) }[/math]. Thus, [math]\displaystyle{ \bigcup_{i\in\mathcal{I}}C_i \in \mathfrak{S}[\mathbf{c}] }[/math]. |
Induction of closure from topology
Conversely, given a family [math]\displaystyle{ \kappa }[/math] satisfying axioms [T1]–[T3], it is possible to construct a Kuratowski closure operator in the following way: if [math]\displaystyle{ A \in \wp(X) }[/math] and [math]\displaystyle{ A^\uparrow = \{B \in \wp(X)\ |\ A \subseteq B \} }[/math] is the inclusion upset of [math]\displaystyle{ A }[/math], then [math]\displaystyle{ \mathbf{c}_\kappa(A) := \bigcap_{B \in (\kappa \cap A^\uparrow)} B }[/math]
defines a Kuratowski closure operator [math]\displaystyle{ \mathbf{c}_\kappa }[/math] on [math]\displaystyle{ \wp(X) }[/math].
Proof 2.
|
---|
[K1] Since [math]\displaystyle{ \varnothing^\uparrow = \wp(X) }[/math], [math]\displaystyle{ \mathbf{c}_\kappa(\varnothing) }[/math] reduces to the intersection of all sets in the family [math]\displaystyle{ \kappa }[/math]; but [math]\displaystyle{ \varnothing \in \kappa }[/math] by axiom [T1], so the intersection collapses to the null set and [K1] follows. [K2] By definition of [math]\displaystyle{ A^\uparrow }[/math], we have that [math]\displaystyle{ A \subseteq B }[/math] for all [math]\displaystyle{ B \in \left(\kappa \cap A^\uparrow\right) }[/math], and thus [math]\displaystyle{ A }[/math] must be contained in the intersection of all such sets. Hence follows extensivity [K2]. [K3] Notice that, for all [math]\displaystyle{ A \in \wp(X) }[/math], the family [math]\displaystyle{ \mathbf{c}_\kappa(A)^\uparrow \cap \kappa }[/math] contains [math]\displaystyle{ \mathbf{c}_\kappa(A) }[/math] itself as a minimal element w.r.t. inclusion. Hence [math]\displaystyle{ \mathbf{c}_\kappa^2(A) = \bigcap_{B \in \mathbf{c}_\kappa(A)^\uparrow \cap \kappa}B = \mathbf{c}_\kappa(A) }[/math], which is idempotence [K3]. [K4'] Let [math]\displaystyle{ A \subseteq B \subseteq X }[/math]: then [math]\displaystyle{ B^\uparrow \subseteq A^\uparrow }[/math], and thus [math]\displaystyle{ \kappa \cap B^\uparrow \subseteq \kappa \cap A^\uparrow }[/math]. Since the latter family may contain more elements than the former, we find [math]\displaystyle{ \mathbf{c}_\kappa(A) \subseteq \mathbf{c}_\kappa(B) }[/math], which is isotonicity [K4']. Notice that isotonicity implies [math]\displaystyle{ \mathbf{c}_\kappa(A) \subseteq \mathbf{c}_\kappa(A\cup B) }[/math] and [math]\displaystyle{ \mathbf{c}_\kappa(B) \subseteq \mathbf{c}_\kappa(A\cup B) }[/math], which together imply [math]\displaystyle{ \mathbf{c}_\kappa(A) \cup \mathbf{c}_\kappa(B) \subseteq \mathbf{c}_\kappa(A\cup B) }[/math]. [K4] Finally, fix [math]\displaystyle{ A,B \in \wp(X) }[/math]. Axiom [T2] implies [math]\displaystyle{ \mathbf{c}_\kappa(A), \mathbf{c}_\kappa(B) \in \kappa }[/math]; furthermore, axiom [T2] implies that [math]\displaystyle{ \mathbf{c}_\kappa(A) \cup \mathbf{c}_\kappa(B) \in \kappa }[/math]. By extensivity [K2] one has [math]\displaystyle{ \mathbf{c}_\kappa(A) \in A^\uparrow }[/math] and [math]\displaystyle{ \mathbf{c}_\kappa(B) \in B^\uparrow }[/math], so that [math]\displaystyle{ \mathbf{c}_\kappa(A) \cup \mathbf{c}_\kappa(B) \in \left(A^\uparrow\right) \cap \left(B^\uparrow\right) }[/math]. But [math]\displaystyle{ \left(A^\uparrow\right) \cap \left(B^\uparrow\right) = (A \cup B)^\uparrow }[/math], so that all in all [math]\displaystyle{ \mathbf{c}_\kappa(A) \cup \mathbf{c}_\kappa(B) \in \kappa\cap (A \cup B)^\uparrow }[/math]. Since then [math]\displaystyle{ \mathbf{c}_\kappa(A \cup B) }[/math] is a minimal element of [math]\displaystyle{ \kappa \cap (A \cup B)^\uparrow }[/math] w.r.t. inclusion, we find [math]\displaystyle{ \mathbf{c}_\kappa(A \cup B) \subseteq \mathbf{c}_\kappa(A) \cup \mathbf{c}_\kappa(B) }[/math]. Point 4. ensures additivity [K4]. |
Exact correspondence between the two structures
In fact, these two complementary constructions are inverse to one another: if [math]\displaystyle{ \mathrm{Cls}_\text{K}(X) }[/math] is the collection of all Kuratowski closure operators on [math]\displaystyle{ X }[/math], and [math]\displaystyle{ \mathrm{Atp}(X) }[/math] is the collection of all families consisting of complements of all sets in a topology, i.e. the collection of all families satisfying [T1]–[T3], then [math]\displaystyle{ \mathfrak{S} : \mathrm{Cls}_\text{K}(X) \to \mathrm{Atp}(X) }[/math] such that [math]\displaystyle{ \mathbf{c} \mapsto \mathfrak{S}[\mathbf{c}] }[/math] is a bijection, whose inverse is given by the assignment [math]\displaystyle{ \mathfrak{C}: \kappa \mapsto \mathbf{c}_\kappa }[/math].
Proof 3.
|
---|
First we prove that [math]\displaystyle{ \mathfrak{C} \circ \mathfrak{S} = \mathfrak{1}_{\mathrm{Cls}_\text{K}(X)} }[/math], the identity operator on [math]\displaystyle{ \mathrm{Cls}_\text{K}(X) }[/math]. For a given Kuratowski closure [math]\displaystyle{ \mathbf{c} \in \mathrm{Cls}_\text{K}(X) }[/math], define [math]\displaystyle{ \mathbf{c}' := \mathfrak{C}[\mathfrak{S}[\mathbf{c}]] }[/math]; then if [math]\displaystyle{ A \in \wp(X) }[/math] its primed closure [math]\displaystyle{ \mathbf{c}'(A) }[/math] is the intersection of all [math]\displaystyle{ \mathbf{c} }[/math]-stable sets that contain [math]\displaystyle{ A }[/math]. Its non-primed closure [math]\displaystyle{ \mathbf{c}(A) }[/math] satisfies this description: by extensivity [K2] we have [math]\displaystyle{ A \subseteq \mathbf{c}(A) }[/math], and by idempotence [K3] we have [math]\displaystyle{ \mathbf{c}(\mathbf{c}(A)) = \mathbf{c}(A) }[/math], and thus [math]\displaystyle{ \mathbf{c}(A) \in \left(A^\uparrow \cap \mathfrak{S}[\mathbf{c}]\right) }[/math]. Now, let [math]\displaystyle{ C \in \left(A^\uparrow \cap \mathfrak{S}[\mathbf{c}]\right) }[/math] such that [math]\displaystyle{ A \subseteq C \subseteq \mathbf{c}(A) }[/math]: by isotonicity [K4'] we have [math]\displaystyle{ \mathbf{c}(A) \subseteq \mathbf{c}(C) }[/math], and since [math]\displaystyle{ \mathbf{c}(C) = C }[/math] we conclude that [math]\displaystyle{ C = \mathbf{c}(A) }[/math]. Hence [math]\displaystyle{ \mathbf{c}(A) }[/math] is the minimal element of [math]\displaystyle{ A^\uparrow \cap \mathfrak{S}[\mathbf{c}] }[/math] w.r.t. inclusion, implying [math]\displaystyle{ \mathbf{c}'(A) = \mathbf{c}(A) }[/math]. Now we prove that [math]\displaystyle{ \mathfrak{S} \circ \mathfrak{C} = \mathfrak{1}_{\mathrm{Atp}(X)} }[/math]. If [math]\displaystyle{ \kappa \in \mathrm{Atp}(X) }[/math] and [math]\displaystyle{ \kappa':= \mathfrak{S}[\mathfrak{C}[\kappa]] }[/math] is the family of all sets that are stable under [math]\displaystyle{ \mathbf{c}_\kappa }[/math], the result follows if both [math]\displaystyle{ \kappa' \subseteq \kappa }[/math] and [math]\displaystyle{ \kappa \subseteq \kappa' }[/math]. Let [math]\displaystyle{ A \in \kappa' }[/math]: hence [math]\displaystyle{ \mathbf{c}_\kappa(A) = A }[/math]. Since [math]\displaystyle{ \mathbf{c}_\kappa(A) }[/math] is the intersection of an arbitrary subfamily of [math]\displaystyle{ \kappa }[/math], and the latter is complete under arbitrary intersections by [T2], then [math]\displaystyle{ A = \mathbf{c}_\kappa(A) \in \kappa }[/math]. Conversely, if [math]\displaystyle{ A \in \kappa }[/math], then [math]\displaystyle{ \mathbf{c}_\kappa(A) }[/math] is the minimal superset of [math]\displaystyle{ A }[/math] that is contained in [math]\displaystyle{ \kappa }[/math]. But that is trivially [math]\displaystyle{ A }[/math] itself, implying [math]\displaystyle{ A \in \kappa' }[/math]. |
We observe that one may also extend the bijection [math]\displaystyle{ \mathfrak{S} }[/math] to the collection [math]\displaystyle{ \mathrm{Cls}_{\check C}(X) }[/math] of all Čech closure operators, which strictly contains [math]\displaystyle{ \mathrm{Cls}_\text{K}(X) }[/math]; this extension [math]\displaystyle{ \overline{\mathfrak{S}} }[/math] is also surjective, which signifies that all Čech closure operators on [math]\displaystyle{ X }[/math] also induce a topology on [math]\displaystyle{ X }[/math].[11] However, this means that [math]\displaystyle{ \overline{\mathfrak{S}} }[/math] is no longer a bijection.
Examples
- As discussed above, given a topological space [math]\displaystyle{ X }[/math] we may define the closure of any subset [math]\displaystyle{ A \subseteq X }[/math] to be the set [math]\displaystyle{ \mathbf{c}(A)=\bigcap\{C\text{ a closed subset of }X| A\subseteq C\} }[/math], i.e. the intersection of all closed sets of [math]\displaystyle{ X }[/math] which contain [math]\displaystyle{ A }[/math]. The set [math]\displaystyle{ \mathbf{c}(A) }[/math] is the smallest closed set of [math]\displaystyle{ X }[/math] containing [math]\displaystyle{ A }[/math], and the operator [math]\displaystyle{ \mathbf{c}:\wp(X) \to \wp(X) }[/math] is a Kuratowski closure operator.
- If [math]\displaystyle{ X }[/math] is any set, the operators [math]\displaystyle{ \mathbf{c}_\top, \mathbf{c}_\bot : \wp(X) \to \wp(X) }[/math] such that [math]\displaystyle{ \mathbf{c}_\top(A) = \begin{cases} \varnothing & A = \varnothing, \\ X & A \neq \varnothing, \end{cases} \qquad \mathbf{c}_\bot(A) = A\quad \forall A \in \wp(X), }[/math]are Kuratowski closures. The first induces the indiscrete topology [math]\displaystyle{ \{\varnothing,X\} }[/math], while the second induces the discrete topology [math]\displaystyle{ \wp(X) }[/math].
- Fix an arbitrary [math]\displaystyle{ S \subsetneq X }[/math], and let [math]\displaystyle{ \mathbf{c}_S: \wp(X) \to \wp(X) }[/math] be such that [math]\displaystyle{ \mathbf{c}_S(A) := A \cup S }[/math] for all [math]\displaystyle{ A \in \wp(X) }[/math]. Then [math]\displaystyle{ \mathbf{c}_S }[/math] defines a Kuratowski closure; the corresponding family of closed sets [math]\displaystyle{ \mathfrak{S}[\mathbf{c}_S] }[/math] coincides with [math]\displaystyle{ S^\uparrow }[/math], the family of all subsets that contain [math]\displaystyle{ S }[/math]. When [math]\displaystyle{ S = \varnothing }[/math], we once again retrieve the discrete topology [math]\displaystyle{ \wp(X) }[/math] (i.e. [math]\displaystyle{ \mathbf{c}_{\varnothing}=\mathbf{c}_\bot }[/math], as can be seen from the definitions).
- If [math]\displaystyle{ \lambda }[/math] is an infinite cardinal number such that [math]\displaystyle{ \lambda \leq \operatorname{crd}(X) }[/math], then the operator [math]\displaystyle{ \mathbf{c}_\lambda : \wp(X) \to \wp(X) }[/math] such that[math]\displaystyle{ \mathbf{c}_\lambda(A) = \begin{cases} A & \operatorname{crd}(A) \lt \lambda, \\ X & \operatorname{crd}(A) \geq \lambda \end{cases} }[/math]satisfies all four Kuratowski axioms.[12] If [math]\displaystyle{ \lambda = \aleph_0 }[/math], this operator induces the cofinite topology on [math]\displaystyle{ X }[/math]; if [math]\displaystyle{ \lambda = \aleph_1 }[/math], it induces the cocountable topology.
Properties
- Since any Kuratowski closure is isotonic, and so is obviously any inclusion mapping, one has the (isotonic) Galois connection [math]\displaystyle{ \langle \mathbf{c}: \wp(X) \to \mathrm{im}(\mathbf{c});\iota : \mathrm{im}(\mathbf{c}) \hookrightarrow \wp(X) \rangle }[/math], provided one views [math]\displaystyle{ \wp(X) }[/math]as a poset with respect to inclusion, and [math]\displaystyle{ \mathrm{im}(\mathbf{c}) }[/math] as a subposet of [math]\displaystyle{ \wp(X) }[/math]. Indeed, it can be easily verified that, for all [math]\displaystyle{ A \in \wp(X) }[/math] and [math]\displaystyle{ C \in \mathrm{im}(\mathbf{c}) }[/math], [math]\displaystyle{ \mathbf{c}(A) \subseteq C }[/math] if and only if [math]\displaystyle{ A \subseteq \iota(C) }[/math].
- If [math]\displaystyle{ \{A_i\}_{i\in\mathcal I} }[/math] is a subfamily of [math]\displaystyle{ \wp(X) }[/math], then [math]\displaystyle{ \bigcup_{i\in\mathcal I} \mathbf{c}(A_i) \subseteq \mathbf{c}\left(\bigcup_{i\in\mathcal I} A_i\right), \qquad \mathbf{c}\left(\bigcap_{i\in\mathcal I} A_i\right) \subseteq \bigcap_{i\in\mathcal I} \mathbf{c}(A_i). }[/math]
- If [math]\displaystyle{ A,B \in \wp(X) }[/math], then [math]\displaystyle{ \mathbf{c}(A) \setminus \mathbf{c}(B) \subseteq \mathbf{c}(A\setminus B) }[/math].
Topological concepts in terms of closure
Refinements and subspaces
A pair of Kuratowski closures [math]\displaystyle{ \mathbf{c}_1, \mathbf{c}_2 : \wp(X) \to \wp(X) }[/math] such that [math]\displaystyle{ \mathbf{c}_2(A) \subseteq \mathbf{c}_1(A) }[/math] for all [math]\displaystyle{ A \in \wp(X) }[/math] induce topologies [math]\displaystyle{ \tau_1,\tau_2 }[/math] such that [math]\displaystyle{ \tau_1 \subseteq \tau_2 }[/math], and vice versa. In other words, [math]\displaystyle{ \mathbf{c}_1 }[/math] dominates [math]\displaystyle{ \mathbf{c}_2 }[/math] if and only if the topology induced by the latter is a refinement of the topology induced by the former, or equivalently [math]\displaystyle{ \mathfrak{S}[\mathbf{c}_1] \subseteq \mathfrak{S}[\mathbf{c}_2] }[/math].[13] For example, [math]\displaystyle{ \mathbf{c}_\top }[/math] clearly dominates [math]\displaystyle{ \mathbf{c}_\bot }[/math](the latter just being the identity on [math]\displaystyle{ \wp(X) }[/math]). Since the same conclusion can be reached substituting [math]\displaystyle{ \tau_i }[/math] with the family [math]\displaystyle{ \kappa_i }[/math] containing the complements of all its members, if [math]\displaystyle{ \mathrm{Cls}_\text{K}(X) }[/math] is endowed with the partial order [math]\displaystyle{ \mathbf{c} \leq \mathbf{c}' \iff \mathbf{c}(A) \subseteq \mathbf{c}'(A) }[/math] for all [math]\displaystyle{ A \in \wp(X) }[/math] and [math]\displaystyle{ \mathrm{Atp}(X) }[/math] is endowed with the refinement order, then we may conclude that [math]\displaystyle{ \mathfrak{S} }[/math] is an antitonic mapping between posets.
In any induced topology (relative to the subset A) the closed sets induce a new closure operator that is just the original closure operator restricted to A: [math]\displaystyle{ \mathbf{c}_A(B) = A \cap \mathbf{c}_X(B) }[/math], for all [math]\displaystyle{ B \subseteq A }[/math].[14]
Continuous maps, closed maps and homeomorphisms
A function [math]\displaystyle{ f:(X,\mathbf{c})\to (Y,\mathbf{c}') }[/math] is continuous at a point [math]\displaystyle{ p }[/math] iff [math]\displaystyle{ p\in\mathbf{c}(A) \Rightarrow f(p)\in\mathbf{c}'(f(A)) }[/math], and it is continuous everywhere iff [math]\displaystyle{ f(\mathbf{c}(A)) \subseteq \mathbf{c}'(f(A)) }[/math] for all subsets [math]\displaystyle{ A \in \wp(X) }[/math].[15] The mapping [math]\displaystyle{ f }[/math] is a closed map iff the reverse inclusion holds,[16] and it is a homeomorphism iff it is both continuous and closed, i.e. iff equality holds.[17]
Separation axioms
Let [math]\displaystyle{ (X, \mathbf{c}) }[/math] be a Kuratowski closure space. Then
- [math]\displaystyle{ X }[/math] is a T0-space iff [math]\displaystyle{ x \neq y }[/math] implies [math]\displaystyle{ \mathbf{c}(\{x\}) \neq \mathbf{c}(\{y\}) }[/math];[18]
- [math]\displaystyle{ X }[/math] is a T1-space iff [math]\displaystyle{ \mathbf{c}(\{x\})=\{x\} }[/math] for all [math]\displaystyle{ x \in X }[/math];[19]
- [math]\displaystyle{ X }[/math] is a T2-space iff [math]\displaystyle{ x \neq y }[/math] implies that there exists a set [math]\displaystyle{ A \in \wp(X) }[/math] such that both [math]\displaystyle{ x \notin \mathbf{c}(A) }[/math] and [math]\displaystyle{ y \notin \mathbf{c}(\mathbf{n}(A)) }[/math], where [math]\displaystyle{ \mathbf{n} }[/math] is the set complement operator.[20]
Closeness and separation
A point [math]\displaystyle{ p }[/math] is close to a subset [math]\displaystyle{ A }[/math] if [math]\displaystyle{ p\in\mathbf{c}(A). }[/math]This can be used to define a proximity relation on the points and subsets of a set.[21]
Two sets [math]\displaystyle{ A,B \in \wp(X) }[/math] are separated iff [math]\displaystyle{ (A \cap \mathbf{c}(B)) \cup (B \cap \mathbf{c}(A)) = \varnothing }[/math]. The space [math]\displaystyle{ X }[/math] is connected iff it cannot be written as the union of two separated subsets.[22]
See also
- Characterizations of the category of topological spaces
- Closure operator
- Closure algebra – Algebraic structure
- Preclosure operator – Closure operator
- Pretopological space – Generalized topological space
- Topological space – Mathematical space with a notion of closeness
Notes
- ↑ Kuratowski (1922).
- ↑ 2.0 2.1 Monteiro (1945), p. 160.
- ↑ 3.0 3.1 3.2 Pervin (1964), p. 44.
- ↑ Pervin (1964), p. 43, Exercise 6.
- ↑ Kuratowski (1966), p. 38.
- ↑ Arkhangel'skij & Fedorchuk (1990), p. 25.
- ↑ "Moore closure". March 7, 2015. https://ncatlab.org/nlab/show/Moore+closure#InTermsOfClosureOperators.
- ↑ Pervin (1964), p. 42, Exercise 5.
- ↑ Monteiro (1945), p. 158.
- ↑ Pervin (1964), p. 46, Exercise 4.
- ↑ Arkhangel'skij & Fedorchuk (1990), p. 26.
- ↑ A proof for the case [math]\displaystyle{ \lambda = \aleph_0 }[/math] can be found at "Is the following a Kuratowski closure operator?!". Stack Exchange. November 21, 2015. https://math.stackexchange.com/q/1539449.
- ↑ Pervin (1964), p. 43, Exercise 10.
- ↑ Pervin (1964), p. 49, Theorem 3.4.3.
- ↑ Pervin (1964), p. 60, Theorem 4.3.1.
- ↑ Pervin (1964), p. 66, Exercise 3.
- ↑ Pervin (1964), p. 67, Exercise 5.
- ↑ Pervin (1964), p. 69, Theorem 5.1.1.
- ↑ Pervin (1964), p. 70, Theorem 5.1.2.
- ↑ A proof can be found at this link.
- ↑ Pervin (1964), pp. 193–196.
- ↑ Pervin (1964), p. 51.
References
- Kuratowski, Kazimierz (1922), "Sur l'opération A de l'Analysis Situs" (in fr), Fundamenta Mathematicae 3: pp. 182–199, http://matwbn.icm.edu.pl/ksiazki/fm/fm3/fm3121.pdf.
- Kuratowski, Kazimierz (1966), Topology, I, Academic Press, ISBN 0-12-429201-1.
- Kazimierz Kuratowski (2010). "On the Operation Ā Analysis Situs". https://www.researchgate.net/publication/318445643.
- Pervin, William J. (1964), Boas, Ralph P. Jr., ed., Foundations of General Topology, Academic Press, ISBN 9781483225159.
- Arkhangel'skij, A.V.; Fedorchuk, V.V. (1990), Gamkrelidze, R.V.; Arkhangel'skij, A.V.; Pontryagin, L.S., eds., General Topology I, Encyclopaedia of Mathematical Sciences, 17, Berlin: Springer-Verlag, ISBN 978-3-642-64767-3.
- Monteiro, António (1945), "Caractérisation de l'opération de fermeture par un seul axiome" (in fr), Portugaliae mathematica 4 (4): pp. 158–160, http://purl.pt/2135.
External links
Original source: https://en.wikipedia.org/wiki/Kuratowski closure axioms.
Read more |