Preclosure operator

From HandWiki
Short description: Closure operator

In topology, a preclosure operator or Čech closure operator is a map between subsets of a set, similar to a topological closure operator, except that it is not required to be idempotent. That is, a preclosure operator obeys only three of the four Kuratowski closure axioms.

Definition

A preclosure operator on a set [math]\displaystyle{ X }[/math] is a map [math]\displaystyle{ [\ \ ]_p }[/math]

[math]\displaystyle{ [\ \ ]_p:\mathcal{P}(X) \to \mathcal{P}(X) }[/math]

where [math]\displaystyle{ \mathcal{P}(X) }[/math] is the power set of [math]\displaystyle{ X. }[/math]

The preclosure operator has to satisfy the following properties:

  1. [math]\displaystyle{ [\varnothing]_p = \varnothing \! }[/math] (Preservation of nullary unions);
  2. [math]\displaystyle{ A \subseteq [A]_p }[/math] (Extensivity);
  3. [math]\displaystyle{ [A \cup B]_p = [A]_p \cup [B]_p }[/math] (Preservation of binary unions).

The last axiom implies the following:

4. [math]\displaystyle{ A \subseteq B }[/math] implies [math]\displaystyle{ [A]_p \subseteq [B]_p }[/math].

Topology

A set [math]\displaystyle{ A }[/math] is closed (with respect to the preclosure) if [math]\displaystyle{ [A]_p=A }[/math]. A set [math]\displaystyle{ U \subset X }[/math] is open (with respect to the preclosure) if its complement [math]\displaystyle{ A = X \setminus U }[/math] is closed. The collection of all open sets generated by the preclosure operator is a topology;[1] however, the above topology does not capture the notion of convergence associated to the operator, one should consider a pretopology, instead.[2]

Examples

Premetrics

Given [math]\displaystyle{ d }[/math] a premetric on [math]\displaystyle{ X }[/math], then

[math]\displaystyle{ [A]_p = \{x \in X : d(x,A)=0\} }[/math]

is a preclosure on [math]\displaystyle{ X. }[/math]

Sequential spaces

The sequential closure operator [math]\displaystyle{ [\ \ ]_\text{seq} }[/math] is a preclosure operator. Given a topology [math]\displaystyle{ \mathcal{T} }[/math] with respect to which the sequential closure operator is defined, the topological space [math]\displaystyle{ (X,\mathcal{T}) }[/math] is a sequential space if and only if the topology [math]\displaystyle{ \mathcal{T}_\text{seq} }[/math] generated by [math]\displaystyle{ [\ \ ]_\text{seq} }[/math] is equal to [math]\displaystyle{ \mathcal{T}, }[/math] that is, if [math]\displaystyle{ \mathcal{T}_\text{seq} = \mathcal{T}. }[/math]

See also

References

  1. Eduard Čech, Zdeněk Frolík, Miroslav Katětov, Topological spaces Prague: Academia, Publishing House of the Czechoslovak Academy of Sciences, 1966, Theorem 14 A.9 [1].
  2. S. Dolecki, An Initiation into Convergence Theory, in F. Mynard, E. Pearl (editors), Beyond Topology, AMS, Contemporary Mathematics, 2009.
  • A.V. Arkhangelskii, L.S.Pontryagin, General Topology I, (1990) Springer-Verlag, Berlin. ISBN:3-540-18178-4.
  • B. Banascheski, Bourbaki's Fixpoint Lemma reconsidered, Comment. Math. Univ. Carolinae 33 (1992), 303-309.