List of nonlinear ordinary differential equations
From HandWiki
See also List of nonlinear partial differential equations and List of linear ordinary differential equations.
A–F
Name Order Equation Applications Abel's differential equation of the first kind 1 [math]\displaystyle{ \frac{dy}{dx} = f_o(x) + f_1(x) y + f_2(x) y^2 + f_3(x) y^3 }[/math] Mathematics Abel's differential equation of the second kind 1 [math]\displaystyle{ (g_o(x) + g_1(x) y)\frac{dy}{dx} = f_o(x) + f_1(x) y + f_2(x) y^2 + f_3(x) y^3 }[/math] Mathematics Bellman's equation or Emden-Fowler's equation 2 [math]\displaystyle{ \frac{d^2y}{dx^2} = k x^a y^b }[/math] Mathematics Bernoulli equation 1 [math]\displaystyle{ \frac{dy}{dx} + P(x) y = Q(x) y^n }[/math] Mathematics Besant-Rayleigh-Plesset equation 2 [math]\displaystyle{ R\frac{d^2R}{dt^2} + \frac{3}{2}\left(\frac{dR}{dt}\right)^2 + \frac{4\nu}{R}\frac{dR}{dt} + \frac{2\gamma}{\rho R} + \frac{\Delta P(t)}{\rho} = 0 }[/math] Fluid dynamics Blasius equation 3 [math]\displaystyle{ \frac{d^3y}{dx^3} + y \frac{d^2y}{dx^2} =0 }[/math] Blasius boundary layer Chandrasekhar equation 2 [math]\displaystyle{ \frac{1}{\xi^2} \frac{d}{d\xi}\left(\xi^2 \frac{d\psi}{d\xi}\right)= e^{-\psi} }[/math] Astrophysics Chandrasekhar's white dwarf equation 2 [math]\displaystyle{ \frac{1}{x^2} \frac{d}{dx}\left(x^2 \frac{dy}{dx}\right) + (y^2 - c)^{3/2}=0 }[/math] Astrophysics Chrystal's equation 1 [math]\displaystyle{ \left(\frac{dy}{dx}\right)^2 + Ax \frac{dy}{dx} + By + Cx^2 =0 }[/math] Mathematics Clairaut's equation 1 [math]\displaystyle{ y= x\frac{dy}{dx} + f\left(\frac{dy}{dx}\right) }[/math] Mathematics D'Alembert's equation 1 [math]\displaystyle{ y = x f\left(\frac{dy}{dx}\right) + g\left(\frac{dy}{dx}\right) }[/math] Mathematics Darboux equation 1 [math]\displaystyle{ \frac{dy}{dx} = \frac{P(x,y) + y R(x,y)}{Q(x,y) + xR(x,y)} }[/math] Mathematics De Boer-Ludford equation 2 [math]\displaystyle{ \frac{d^2y}{dx^2} -xy =2y |y|^\alpha, \ \alpha\gt 0 }[/math] Plasma physics Duffing equation 2 [math]\displaystyle{ \frac{d^2x}{dt^2} + \mu \frac{dx}{dt} + \alpha x + \beta x^3 = \gamma \cos \omega t }[/math] Oscillators Emden equation 2 [math]\displaystyle{ \frac{1}{x^2} \frac{d}{dx}\left(x^2 \frac{dy}{dx}\right)= f(y) }[/math] Astrophysics Euler's differential equation 1 [math]\displaystyle{ \frac{dy}{dx} + \frac{\sqrt{a_0+a_1y +a_2 y^2 + a_3 y^3 + a_4 y^4}}{\sqrt{a_0+a_1x +a_2 x^2 + a_3 x^3 + a_4 x^4}} = 0 }[/math] Mathematics Falkner–Skan equation 3 [math]\displaystyle{ \frac{d^3y}{dx^3} + y \frac{d^2y}{dx^2} + \beta \left[1-\left(\frac{dy}{dx}\right)^2\right]=0 }[/math] Falkner–Skan boundary layer
G–K
Name Order Equation Applications Ivey's equation 2 [math]\displaystyle{ \frac{d^2y}{dx^2} - \frac{1}{y} \left(\frac{dy}{dx}\right)^2 + \frac{2}{x}\frac{dy}{dx} + ky^2=0 }[/math] Jacobi's differential equation 1 [math]\displaystyle{ \frac{dy}{dx} = \frac{Axy + By^2 + ax + by + c}{Ax^2 + Bxy +\alpha x +\beta y + \gamma} }[/math] Mathematics Kidder equation 2 [math]\displaystyle{ \sqrt{1-\alpha y} \frac{d^2y}{dx^2} + 2x \frac{dy}{dx}=0,\ 0\lt \alpha\lt 1 }[/math] Flow through porous medium Krogdahl equation 2 [math]\displaystyle{ \frac{d^2 Q}{d\tau^2} = -Q + \frac{2}{3}\lambda Q^2 - \frac{14}{27} \lambda^2 Q^3 + \mu(1-Q^2)\frac{dQ}{d\tau} + \frac{2}{3}\lambda(1-\lambda Q) \left(\frac{dQ}{d\tau}\right)^2 }[/math] Stellar pulsation
L–Q
Name Order Equation Applications Lane–Emden equation 2 [math]\displaystyle{ \frac{1}{\xi^2} \frac{d}{d\xi} \left({\xi^2 \frac{d\theta}{d\xi}}\right) + \theta^n = 0 }[/math] Astrophysics Langmuir equation 2 [math]\displaystyle{ 3y\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 + 4y \frac{dy}{dx} + y^2 =1 }[/math] Environmental Engineering Langmuir-Blodgett equation 2 [math]\displaystyle{ \sqrt{y}\frac{d^2y}{dx^2}=e^x }[/math] Langmuir-Boguslavski equation 2 [math]\displaystyle{ \frac{d}{dx}\left(x^n\frac{dy}{dx}\right) = \frac{1}{\sqrt{y}} }[/math] Liñán's equation 2 [math]\displaystyle{ \frac{d^2y}{d\zeta^2} =(y^2-\zeta^2)e^{-\delta^{1/3}(y+\gamma \zeta)} }[/math] Combustion Painlevé I transcendent 2 [math]\displaystyle{ \frac{d^2y}{dt^2} = 6 y^2 + t }[/math] Mathematics Painlevé II transcendent 2 [math]\displaystyle{ \frac{d^2y}{dt^2} = 2 y^3 + ty + \alpha }[/math] Mathematics Painlevé III transcendent 2 [math]\displaystyle{ ty\frac{d^2y}{dt^2} = t \left(\frac{dy}{dt} \right)^2-y\frac{dy}{dt} + \delta t + \beta y + \alpha y^3 + \gamma ty^4 }[/math] Mathematics Painlevé IV transcendent 2 [math]\displaystyle{ y\frac{d^2y}{dt^2}=\tfrac12 \left(\frac{dy}{dt} \right)^2+\beta+2(t^2-\alpha)y^2+4ty^3+\tfrac32y^4 }[/math] Mathematics Painlevé V transcendent 2 [math]\displaystyle{ \frac{d^2y}{dt^2}=\left(\frac{1}{2 y }+\frac{1}{ y -1}\right) \left( \frac{dy}{dt} \right)^2 -\frac{1}{t} \frac{dy}{dt}+\frac{( y -1)^2}{t^2}\left(\alpha y +\frac{\beta}{ y }\right) +\gamma\frac{ y }{t}+\delta\frac{ y ( y +1)}{ y -1} }[/math] Mathematics Painlevé VI transcendent 2 [math]\displaystyle{ \frac{d^2y}{dt^2}=\frac{1}{2}\left(\frac{1}{y}+\frac{1}{y-1}+\frac{1}{y-t}\right)\left( \frac{dy}{dt} \right)^2-\left(\frac{1}{t}+\frac{1}{t-1}+\frac{1}{y-t}\right)\frac{dy}{dt} +\frac{y(y-1)(y-t)}{t^2(t-1)^2} \left(\alpha+\beta\frac{t}{y^2}+\gamma\frac{t-1}{(y-1)^2}+\delta\frac{t(t-1)}{(y-t)^2}\right) }[/math] Mathematics Poisson-Boltzmann equation 2 [math]\displaystyle{ \frac{d^2y}{dx^2} + \frac{\alpha}{x} \frac{dy}{dx} = e^y }[/math] Statistical Physics
R–Z
Name Order Equation Applications Rayleigh equation 2 [math]\displaystyle{ \frac{d^2y}{dx^2} + k \frac{dy}{dx} + m \left(\frac{dy}{dx}\right)^3 + n^2 y =0 }[/math] Hydrodynamic stability Riccati equation 1 [math]\displaystyle{ \frac{dy}{dx} + Q(x) y + R(x) y^2 = P(x) }[/math] Mathematics Stuart–Landau equation 1 [math]\displaystyle{ \frac{dA}{dt} = \gamma A - \alpha A |A|^2 }[/math] Hydrodynamic stability Thomas–Fermi equation 2 [math]\displaystyle{ \frac{d^2y}{dx^2} = \frac{1}{\sqrt x}y^{3/2} }[/math] Quantum mechanics[1] Van der Pol equation 2 [math]\displaystyle{ {d^2x \over dt^2}-\mu(1-x^2){dx \over dt}+x= 0 }[/math] Oscillators
References
- ↑ Davis, Harold Thayer. Introduction to nonlinear differential and integral equations. Courier Corporation, 1962.
![]() | Original source: https://en.wikipedia.org/wiki/List of nonlinear ordinary differential equations.
Read more |