List of nonlinear partial differential equations
See also Nonlinear partial differential equation, List of partial differential equation topics and List of nonlinear ordinary differential equations.
A–F
Name Dim Equation Applications Bateman-Burgers equation 1+1 [math]\displaystyle{ \displaystyle u_t+uu_x=\nu u_{xx} }[/math] Fluid mechanics Benjamin–Bona–Mahony 1+1 [math]\displaystyle{ \displaystyle u_t+u_x+uu_x-u_{xxt}=0 }[/math] Fluid mechanics Benjamin–Ono 1+1 [math]\displaystyle{ \displaystyle u_t+Hu_{xx}+uu_x=0 }[/math] internal waves in deep water Boomeron 1+1 [math]\displaystyle{ \displaystyle u_t=\mathbf{b}\cdot\mathbf{v}_x, \quad \displaystyle \mathbf{v}_{xt}=u_{xx}\mathbf{b}+\mathbf{a}\times\mathbf{v}_x- 2\mathbf{v}\times(\mathbf{v}\times\mathbf{b}) }[/math] Solitons Boltzmann equation 1+6 [math]\displaystyle{ \frac{\partial f_i}{\partial t} + \frac{\mathbf{p}_i}{m_i}\cdot\nabla f_i + \mathbf{F}\cdot\frac{\partial f_i}{\partial \mathbf{p}_i} = \left(\frac{\partial f_i}{\partial t} \right)_\mathrm{coll}, \quad \left(\frac{\partial f_i}{\partial t} \right)_{\mathrm{coll}} = \sum_{j=1}^n \iint g_{ij} I_{ij}(g_{ij}, \Omega)[f'_i f'_j - f_if_j] \,d\Omega\,d^3\mathbf{p'} }[/math] Statistical mechanics Born–Infeld 1+1 [math]\displaystyle{ \displaystyle (1-u_t^2)u_{xx} +2u_xu_tu_{xt}-(1+u_x^2)u_{tt}=0 }[/math] Electrodynamics Boussinesq 1+1 [math]\displaystyle{ \displaystyle u_{tt} - u_{xx} - u_{xxxx} - 3(u^2)_{xx} = 0 }[/math] Fluid mechanics Boussinesq type equation 1+1 [math]\displaystyle{ \displaystyle u_{tt}-u_{xx}-2 \alpha (u u_x)_{x}-\beta u_{xxtt}=0 }[/math] Fluid mechanics Buckmaster 1+1 [math]\displaystyle{ \displaystyle u_t=(u^4)_{xx}+(u^3)_x }[/math] Thin viscous fluid sheet flow Cahn–Hilliard equation Any [math]\displaystyle{ \displaystyle c_t = D\nabla^2\left(c^3-c-\gamma\nabla^2 c\right) }[/math] Phase separation Calabi flow Any [math]\displaystyle{ \frac{\partial g_{ij}}{\partial t}=(\Delta R)g_{ij} }[/math] Calabi–Yau manifolds Camassa–Holm 1+1 [math]\displaystyle{ u_t + 2\kappa u_x - u_{xxt} + 3 u u_x = 2 u_x u_{xx} + u u_{xxx}\, }[/math] Peakons Carleman 1+1 [math]\displaystyle{ \displaystyle u_t+u_x=v^2-u^2=v_x-v_t }[/math] Cauchy momentum any [math]\displaystyle{ \displaystyle \rho \left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v}\right) = \nabla \cdot \sigma + \rho\mathbf{f} }[/math] Momentum transport Chafee–Infante equation [math]\displaystyle{ u_t-u_{xx}+\lambda(u^3-u)=0 }[/math] Clairaut equation any [math]\displaystyle{ x\cdot Du+f(Du)=u }[/math] Differential geometry Clarke's equation 1+1 [math]\displaystyle{ (\theta_t-\gamma e^{\theta})_{tt}=(\theta_t-e^\theta)_{xx} }[/math] Combustion Complex Monge–Ampère Any [math]\displaystyle{ \displaystyle \det(\partial_{i\bar j}\varphi) = }[/math] lower order terms Calabi conjecture Constant astigmatism 1+1 [math]\displaystyle{ z_{yy} + \left(\frac{1}{z}\right)_{xx} + 2 = 0 }[/math] Differential geometry Davey–Stewartson 1+2 [math]\displaystyle{ \displaystyle i u_t + c_0 u_{xx} + u_{yy} = c_1 |u|^2 u + c_2 u \varphi_x, \quad \displaystyle \varphi_{xx} + c_3 \varphi_{yy} = ( |u|^2 )_x }[/math] Finite depth waves Degasperis–Procesi 1+1 [math]\displaystyle{ \displaystyle u_t - u_{xxt} + 4u u_x = 3 u_x u_{xx} + u u_{xxx} }[/math] Peakons Dispersive long wave 1+1 [math]\displaystyle{ \displaystyle u_t=(u^2-u_x+2w)_x }[/math], [math]\displaystyle{ w_t=(2uw+w_x)_x }[/math] Drinfeld–Sokolov–Wilson 1+1 [math]\displaystyle{ \displaystyle u_t=3ww_x, \quad \displaystyle w_t=2w_{xxx}+2uw_x+u_xw }[/math] Dym equation 1+1 [math]\displaystyle{ \displaystyle u_t = u^3u_{xxx}.\, }[/math] Solitons Eckhaus equation 1+1 [math]\displaystyle{ iu_t+u_{xx}+2|u|^2_xu+|u|^4u=0 }[/math] Integrable systems Eikonal equation any [math]\displaystyle{ \displaystyle |\nabla u(x)|=F(x), \ x\in \Omega }[/math] optics Einstein field equations Any [math]\displaystyle{ \displaystyle R_{\mu\nu} - {\textstyle 1 \over 2}R\,g_{\mu\nu}+\Lambda g_{\mu\nu} = \frac{8\pi G}{c^{4}} T_{\mu\nu} }[/math] General relativity Ernst equation 2 [math]\displaystyle{ \displaystyle \Re(u)(u_{rr}+u_r/r+u_{zz}) = (u_r)^2+(u_z)^2 }[/math] Estevez–Mansfield–Clarkson equation [math]\displaystyle{ U_{tyyy}+\beta U_y U_{yt}+\beta U_{yy} U_t+U_{tt}=0 \text{ in which } U=u(x,y,t) }[/math] Euler equations 1+3 [math]\displaystyle{ \frac{\partial\rho}{\partial t}+\nabla\cdot(\rho\mathbf{u})=0,\quad \rho\left(\frac{\partial\mathbf{u}}{\partial t}+\mathbf{v}\cdot\nabla\mathbf{v}\right)=-\nabla p + \rho\mathbf{f},\quad \frac{\partial s}{\partial t}+\mathbf{v}\cdot\nabla s=0 }[/math] non-viscous fluids Fisher's equation 1+1 [math]\displaystyle{ \displaystyle u_t=u(1-u)+u_{xx} }[/math] Gene propagation FitzHugh–Nagumo model 1+1 [math]\displaystyle{ \displaystyle u_t=u_{xx}+u(u-a)(1-u)+w, \quad \displaystyle w_t=\varepsilon u }[/math] Biological neuron model Föppl–von Kármán equations [math]\displaystyle{ \frac{Eh^3}{12(1-\nu^2)}\nabla^4 w-h\frac{\partial}{\partial x_\beta}\left(\sigma_{\alpha\beta}\frac{\partial w}{\partial x_\alpha}\right)=P, \quad \frac{\partial\sigma_{\alpha\beta}}{\partial x_\beta}=0 }[/math] Solid Mechanics Fujita–Storm equation [math]\displaystyle{ u_{t}=a (u^{-2} u_x)_x }[/math]
G–K
Name Dim Equation Applications G equation 1+3 [math]\displaystyle{ G_t + \mathbf{v}\cdot\nabla G = S_L(G) |\nabla G| }[/math] turbulent combustion Generic scalar transport 1+3 [math]\displaystyle{ \displaystyle \varphi_t + \nabla \cdot f(t,x,\varphi,\nabla\varphi) = g(t,x,\varphi) }[/math] transport Ginzburg–Landau 1+3 [math]\displaystyle{ \displaystyle \alpha \psi + \beta |\psi|^2 \psi + \tfrac{1}{2m} \left(-i\hbar\nabla - 2e\mathbf{A} \right)^2 \psi = 0 }[/math] Superconductivity Gross–Pitaevskii 1 + n [math]\displaystyle{ \displaystyle i\partial_t\psi = \left (-\tfrac12\nabla^2 + V(x) + g|\psi|^2 \right ) \psi }[/math] Bose–Einstein condensate Gyrokinetics equation 1 + 5 [math]\displaystyle{ {\displaystyle {\frac {\partial h_{s}}{\partial t}}+\left(v_{||}{\hat {b}}+{\vec {V}}_{ds}+\left\langle {\vec {V}}_{\phi }\right\rangle _{\varphi }\right)\cdot {\vec {\nabla }}_{\vec {R}}h_{s}-\sum _{s'}\left\langle C\left[h_{s},h_{s'}\right]\right\rangle _{\varphi }={\frac {Z_{s}ef_{s0}}{T_{s}}}{\frac {\partial \left\langle \phi \right\rangle _{\varphi }}{\partial t}}-{\frac {\partial f_{s0}}{\partial \psi }}\left\langle {\vec {V}}_{\phi }\right\rangle _{\varphi }\cdot {\vec {\nabla }}\psi } }[/math] Microturbulence in plasma Guzmán 1 + n [math]\displaystyle{ \displaystyle J_t+gJ_x+1/2\sigma^2J_{xx}-\lambda\sigma^2(J_x)^2+f=0 }[/math] Hamilton–Jacobi–Bellman equation for risk aversion Hartree equation Any [math]\displaystyle{ \displaystyle i\partial_tu + \Delta u= \left (\pm |x|^{-n} |u|^2 \right) u }[/math] Hasegawa–Mima 1+3 [math]\displaystyle{ \displaystyle 0 = \frac{\partial}{\partial t} \left( \nabla^2 \varphi - \varphi \right) - \left[ \left( \nabla\varphi \times \hat{\mathbf{z}} \right)\cdot \nabla \right] \left[ \nabla^2 \varphi - \ln \left(\frac{n_0}{\omega_{ci}}\right)\right] }[/math] Turbulence in plasma Heisenberg ferromagnet 1+1 [math]\displaystyle{ \displaystyle \mathbf{S}_t=\mathbf{S}\wedge \mathbf{S}_{xx}. }[/math] Magnetism Hicks 1+1 [math]\displaystyle{ \psi_{rr} - \psi_r/r + \psi_{zz} = r^2 \mathrm{d}H/\mathrm{d} \psi - \Gamma \mathrm{d} \Gamma/\mathrm{d}\psi }[/math] Fluid dynamics Hunter–Saxton 1+1 [math]\displaystyle{ \displaystyle \left (u_t + u u_x \right )_x = \tfrac{1}{2} u_x^2 }[/math] Liquid crystals Ishimori equation 1+2 [math]\displaystyle{ \displaystyle \mathbf{S}_t = \mathbf{S}\wedge \left(\mathbf{S}_{xx} + \mathbf{S}_{yy}\right)+ u_x\mathbf{S}_y + u_y\mathbf{S}_x,\quad \displaystyle u_{xx}-\alpha^2 u_{yy}=-2\alpha^2 \mathbf{S}\cdot\left(\mathbf{S}_x\wedge \mathbf{S}_y\right) }[/math] Integrable systems Kadomtsev –Petviashvili 1+2 [math]\displaystyle{ \displaystyle \partial_x \left (\partial_t u+u \partial_x u+\varepsilon^2\partial_{xxx}u \right )+\lambda\partial_{yy}u=0 }[/math] Shallow water waves Kardar–Parisi–Zhang equation 1+3 [math]\displaystyle{ \displaystyle h_t=\nu \nabla^2 h + \lambda (\nabla h)^2 /2+ \eta }[/math] Stochastics von Karman 2 [math]\displaystyle{ \displaystyle \nabla^4 u = E \left (w_{xy}^2-w_{xx}w_{yy} \right ), \quad \nabla^4 w = a+b \left (u_{yy}w_{xx}+u_{xx}w_{yy}-2u_{xy}w_{xy} \right) }[/math] Kaup 1+1 [math]\displaystyle{ \displaystyle f_x=2fgc(x-t)=g_t }[/math] Kaup–Kupershmidt 1+1 [math]\displaystyle{ \displaystyle u_t = u_{xxxxx}+10u_{xxx}u+25u_{xx}u_x+20u^2u_x }[/math] Integrable systems Klein–Gordon–Maxwell any [math]\displaystyle{ \displaystyle \nabla^2s= \left (|\mathbf a|^2+1 \right )s, \quad \nabla^2\mathbf a =\nabla(\nabla\cdot\mathbf a)+s^2\mathbf a }[/math] Klein–Gordon (nonlinear) any [math]\displaystyle{ \nabla^2u+\lambda u^p=0 }[/math] Relativistic quantum mechanics Khokhlov–Zabolotskaya 1+2 [math]\displaystyle{ \displaystyle u_{xt} -(uu_x)_x =u_{yy} }[/math] Korteweg–de Vries (KdV) 1+1 [math]\displaystyle{ \displaystyle u_{t}+u_{xxx}-6u u_{x}=0 }[/math] Shallow waves, Integrable systems KdV (super) 1+1 [math]\displaystyle{ \displaystyle u_t=6uu_x-u_{xxx}+3ww_{xx}, \quad w_t=3u_xw+6uw_x-4w_{xxx} }[/math] There are more minor variations listed in the article on KdV equations. Kuramoto–Sivashinsky equation 1 + n [math]\displaystyle{ \displaystyle u_t+\nabla^4u+\nabla^2u+ \tfrac{1}{2}|\nabla u|^2=0 }[/math] Combustion
L–Q
Name Dim Equation Applications Landau–Lifshitz model 1+n [math]\displaystyle{ \displaystyle \frac{\partial \mathbf{S}}{\partial t} = \mathbf{S}\wedge \sum_i\frac{\partial^2 \mathbf{S}}{\partial x_i^{2}} + \mathbf{S}\wedge J\mathbf{S} }[/math] Magnetic field in solids Lin–Tsien equation 1+2 [math]\displaystyle{ \displaystyle 2u_{tx}+u_xu_{xx}-u_{yy}=0 }[/math] Liouville equation any [math]\displaystyle{ \displaystyle \nabla^2u+e^{\lambda u}=0 }[/math] Liouville–Bratu–Gelfand equation any [math]\displaystyle{ \nabla^2 \psi + \lambda e^\psi=0 }[/math] combustion, astrophysics Logarithmic Schrödinger equation any [math]\displaystyle{ i \frac{\partial \psi}{\partial t} + \Delta \psi + \psi \ln |\psi|^2 = 0. }[/math] Superfluids, Quantum gravity Minimal surface 3 [math]\displaystyle{ \displaystyle \operatorname{div}(Du/\sqrt{1+|Du|^2})=0 }[/math] minimal surfaces Monge–Ampère any [math]\displaystyle{ \displaystyle \det(\partial_{ij}\varphi) = }[/math] lower order terms Navier–Stokes
(and its derivation)1+3 [math]\displaystyle{ \displaystyle \rho \left( \frac{\partial v_i}{\partial t} + v_j \frac{\partial v_i}{\partial x_j} \right) = - \frac{\partial p}{\partial x_i} + \frac{\partial}{\partial x_j} \left[ \mu \left( \frac{\partial v_i}{\partial x_j} + \frac{\partial v_j}{\partial x_i} \right) + \lambda \frac{\partial v_k}{\partial x_k} \right] + \rho f_i }[/math]
+ mass conservation: [math]\displaystyle{ \frac{\partial \rho}{\partial t} + \frac{\partial \left( \rho\, v_i \right)}{\partial x_i} = 0 }[/math]
+ an equation of state to relate p and ρ, e.g. for an incompressible flow: [math]\displaystyle{ \frac{\partial v_i}{\partial x_i} = 0 }[/math]Fluid flow, gas flow Nonlinear Schrödinger (cubic) 1+1 [math]\displaystyle{ \displaystyle i\partial_t\psi=-{1\over 2}\partial^2_x\psi+\kappa|\psi|^2 \psi }[/math] optics, water waves Nonlinear Schrödinger (derivative) 1+1 [math]\displaystyle{ \displaystyle i\partial_t\psi=-{1\over 2}\partial^2_x\psi+\partial_x(i\kappa|\psi|^2 \psi) }[/math] optics, water waves Omega equation 1+3 [math]\displaystyle{ \displaystyle \nabla^2\omega + \frac{f^2}{\sigma}\frac{\partial^2\omega}{\partial p^2} }[/math] [math]\displaystyle{ \displaystyle = \frac{f}{\sigma}\frac{\partial}{\partial p}\mathbf{V}_g\cdot\nabla_p (\zeta_g + f) + \frac{R}{\sigma p}\nabla^2_p(\mathbf{V}_g\cdot\nabla_p T) }[/math] atmospheric physics Plateau 2 [math]\displaystyle{ \displaystyle (1+u_y^2)u_{xx} -2u_xu_yu_{xy} +(1+u_x^2)u_{yy}=0 }[/math] minimal surfaces Pohlmeyer–Lund–Regge 2 [math]\displaystyle{ \displaystyle u_{xx}-u_{yy}\pm \sin u \cos u +\frac{\cos u}{\sin^3 u}(v_x^2-v_y^2)=0,\quad \displaystyle (v_x\cot^2u)_x = (v_y\cot^2 u)_y }[/math] Porous medium 1+n [math]\displaystyle{ \displaystyle u_t=\Delta(u^\gamma) }[/math] diffusion Prandtl 1+2 [math]\displaystyle{ \displaystyle u_t+uu_x+vu_y=U_t+UU_x+\frac{\mu}{\rho}u_{yy} }[/math], [math]\displaystyle{ \displaystyle u_x+v_y=0 }[/math] boundary layer
R–Z, α–ω
Name Dim Equation Applications Rayleigh 1+1 [math]\displaystyle{ \displaystyle u_{tt}-u_{xx} = \varepsilon(u_t-u_t^3) }[/math] Ricci flow Any [math]\displaystyle{ \displaystyle \partial_t g_{ij}=-2 R_{ij} }[/math] Poincaré conjecture Richards equation 1+3 [math]\displaystyle{ \displaystyle \theta_t=\left[ K(\theta) \left (\psi_z + 1 \right) \right]_z }[/math] Variably saturated flow in porous media Rosenau–Hyman 1+1 [math]\displaystyle{ u_t + a \left(u^n\right)_x + \left(u^n\right)_{xxx} = 0 }[/math] compacton solutions Sawada–Kotera 1+1 [math]\displaystyle{ \displaystyle u_t+45u^2u_x+15u_xu_{xx}+15uu_{xxx}+u_{xxxxx}=0 }[/math] Sack–Schamel equation 1+1 [math]\displaystyle{ \ddot V + \partial_\eta \left[\frac{1}{1-\ddot V} \partial_\eta \left(\frac{1-\ddot V}{V}\right) \right] =0 }[/math] plasmas Schamel equation 1+1 [math]\displaystyle{ \phi_t + (1 + b \sqrt \phi ) \phi_x + \phi_{xxx} = 0 }[/math] plasmas, solitons, optics Schlesinger Any [math]\displaystyle{ \displaystyle {\partial A_i \over \partial t_j} {\left[ A_i, \ A_j \right] \over t_i - t_j}, \quad i\neq j, \quad {\partial A_i \over \partial t_i} =- \sum_{j=1 \atop j\neq i}^n {\left[ A_i, \ A_j \right] \over t_i - t_j}, \quad 1\leq i, j \leq n }[/math] isomonodromic deformations Seiberg–Witten 1+3 [math]\displaystyle{ \displaystyle D^A\varphi=0, \qquad F^+_A=\sigma(\varphi) }[/math] Seiberg–Witten invariants, QFT Shallow water 1+2 [math]\displaystyle{ \displaystyle \eta_t + (\eta u)_x + (\eta v)_y = 0,\ (\eta u)_t+ \left( \eta u^2 + \frac{1}{2}g \eta^2 \right)_x + (\eta uv)_y = 0,\ (\eta v)_t + (\eta uv)_x + \left(\eta v^2 + \frac{1}{2}g \eta ^2\right)_y = 0 }[/math] shallow water waves Sine–Gordon 1+1 [math]\displaystyle{ \displaystyle \, \varphi_{tt}- \varphi_{xx} + \sin\varphi = 0 }[/math] Solitons, QFT Sinh–Gordon 1+1 [math]\displaystyle{ \displaystyle u_{xt}= \sinh u }[/math] Solitons, QFT Sinh–Poisson 1+n [math]\displaystyle{ \displaystyle \nabla^2u+\sinh u=0 }[/math] Fluid Mechanics Swift–Hohenberg any [math]\displaystyle{ \displaystyle u_t = r u - (1+\nabla^2)^2u + N(u) }[/math] pattern forming Thomas 2 [math]\displaystyle{ \displaystyle u_{xy}+\alpha u_x+\beta u_y+\gamma u_xu_y=0 }[/math] Thirring 1+1 [math]\displaystyle{ \displaystyle iu_x+v+u|v|^2=0 }[/math], [math]\displaystyle{ \displaystyle iv_t+u+v|u|^2=0 }[/math] Dirac field, QFT Toda lattice any [math]\displaystyle{ \displaystyle \nabla^2\log u_n = u_{n+1}-2u_n+u_{n-1} }[/math] Veselov–Novikov 1+2 [math]\displaystyle{ \displaystyle (\partial_t+\partial_z^3+\partial_{\bar z}^3)v+\partial_z(uv)+\partial_{\bar z}(uw) =0 }[/math], [math]\displaystyle{ \displaystyle \partial_{\bar z}u=3\partial_zv }[/math], [math]\displaystyle{ \displaystyle \partial_zw=3\partial_{\bar z} v }[/math] shallow water waves Vorticity equation [math]\displaystyle{ \frac{\partial \boldsymbol \omega}{\partial t} + (\mathbf u \cdot \nabla) \boldsymbol \omega = (\boldsymbol \omega \cdot \nabla) \mathbf u - \boldsymbol \omega (\nabla \cdot \mathbf u) + \frac{1}{\rho^2}\nabla \rho \times \nabla p + \nabla \times \left( \frac{\nabla \cdot \tau}{\rho} \right) + \nabla \times \left( \frac{\mathbf{f}}{\rho} \right), \ \boldsymbol{\omega}=\nabla\times\mathbf{u} }[/math] Fluid Mechanics Wadati–Konno–Ichikawa–Schimizu 1+1 [math]\displaystyle{ \displaystyle iu_t+((1+|u|^2)^{-1/2}u)_{xx}=0 }[/math] WDVV equations Any [math]\displaystyle{ \displaystyle \sum_{\sigma, \tau = 1}^n\left({\partial^3 F \over \partial t^\alpha t^\beta t^\sigma} \eta^{\sigma \tau} {\partial^3 F \over \partial t^\mu t^\nu t^\tau} \right) }[/math] [math]\displaystyle{ \displaystyle = \sum_{\sigma, \tau = 1}^n\left({\partial^3 F \over \partial t^\alpha t^\nu t^\sigma} \eta^{\sigma \tau} {\partial^3 F \over \partial t^\mu t^\beta t^\tau} \right) }[/math] Topological field theory, QFT WZW model 1+1 [math]\displaystyle{ S_k(\gamma)= - \, \frac {k}{8\pi} \int_{S^2} d^2x\, \mathcal{K} (\gamma^{-1} \partial^\mu \gamma \, , \, \gamma^{-1} \partial_\mu \gamma) + 2\pi k\, S^{\mathrm WZ}(\gamma) }[/math] [math]\displaystyle{ S^{\mathrm WZ}(\gamma) = - \, \frac{1}{48\pi^2} \int_{B^3} d^3y\, \varepsilon^{ijk} \mathcal{K} \left( \gamma^{-1} \, \frac {\partial \gamma} {\partial y^i} \, , \, \left[ \gamma^{-1} \, \frac {\partial \gamma} {\partial y^j} \, , \, \gamma^{-1} \, \frac {\partial \gamma} {\partial y^k} \right] \right) }[/math]
QFT Whitham equation 1+1 [math]\displaystyle{ \displaystyle \eta_t + \alpha \eta \eta_x + \int_{-\infty}^{+\infty} K(x-\xi)\, \eta_\xi(\xi,t)\, \text{d}\xi = 0 }[/math] water waves Williams spray equation [math]\displaystyle{ \frac{\partial f_j}{\partial t} + \nabla_x\cdot(\mathbf{v}f_j) + \nabla_v\cdot(F_jf_j) =- \frac{\partial }{\partial r}(R_jf_j) - \frac{\partial }{\partial T}(E_jf_j) + Q_j + \Gamma_j,\ F_j = \dot{\mathbf{v}},\ R_j = \dot{r},\ E_j = \dot{T},\ j = 1,2,...,M }[/math] Combustion Yamabe n [math]\displaystyle{ \displaystyle\Delta \varphi+h(x)\varphi = \lambda f(x)\varphi^{(n+2)/(n-2)} }[/math] Differential geometry Yang–Mills (source-free) Any [math]\displaystyle{ \displaystyle D_\mu F^{\mu\nu}=0, \quad F_{\mu \nu} = A_{\mu, \nu} - A_{\nu, \mu }+ [A_\mu, \, A_\nu] }[/math] Gauge theory, QFT Yang–Mills (self-dual/anti-self-dual) 4 [math]\displaystyle{ F_{\alpha \beta} = \pm \varepsilon_{\alpha \beta \mu \nu} F^{\mu \nu}, \quad F_{\mu \nu} = A_{\mu, \nu} - A_{\nu, \mu }+ [A_\mu, \, A_\nu] }[/math] Instantons, Donaldson theory, QFT Yukawa 1+n [math]\displaystyle{ \displaystyle i \partial_t^{}u + \Delta u = -A u,\quad \displaystyle\Box A = m^2_{} A + |u|^2 }[/math] Meson-nucleon interactions, QFT Zakharov system 1+3 [math]\displaystyle{ \displaystyle i \partial_t^{} u + \Delta u = un,\quad \displaystyle \Box n = -\Delta (|u|^2_{}) }[/math] Langmuir waves Zakharov–Schulman 1+3 [math]\displaystyle{ \displaystyle iu_t + L_1u = \varphi u,\quad \displaystyle L_2 \varphi = L_3( | u |^2) }[/math] Acoustic waves Zeldovich–Frank-Kamenetskii equation 1+3 [math]\displaystyle{ \displaystyle u_t = D\nabla^2 u + \frac{\beta^2}{2}u(1-u) e^{-\beta(1-u)} }[/math] Combustion Zoomeron 1+1 [math]\displaystyle{ \displaystyle (u_{xt}/u)_{tt}-(u_{xt}/u)_{xx} +2(u^2)_{xt}=0 }[/math] Solitons φ4 equation 1+1 [math]\displaystyle{ \displaystyle \varphi_{tt}-\varphi_{xx}-\varphi+\varphi^3=0 }[/math] QFT σ-model 1+1 [math]\displaystyle{ \displaystyle {\mathbf v}_{xt}+({\mathbf v}_x{\mathbf v}_t){\mathbf v}=0 }[/math] Harmonic maps, integrable systems, QFT
References
Original source: https://en.wikipedia.org/wiki/List of nonlinear partial differential equations.
Read more |